
MQ Console and REST API

Gwydion Tudur
gtudur1@uk.ibm.com
IBM MQ Development

1

Agenda

• Current options, and why we need something else

• The mqweb server

• The MQ administrative REST API

• Examples

• API Discovery

• Security

• The MQ Console

Current options, and
why we need
something else

Administering software MQ

Queue
Manager

MQ installation

“Machine”

Queue managers
• mqsc
• OS panels z/OS & i
• MQ commands
• MQ Explorer
• PCF
• ini files and

environment variables

MQ installation
• MQ commands

“Machine”
• OS commands and tools

Monitoring
• MQ commands
• Event messages
• Statistics messages
• SMF data
• Trace messages
• Log files

Vendor tooling MQ Appliance adds:
• MQCLI
• MQ Console
• Appliance ConsoleFrom a tooling perspective PCF

is key

Why we need more

While PCF is very powerful, it is not that easy to use

– Requires an MQ client, and a supported
programming language

– Binary format

– Multiple messages generated per request

– There are tools to make this easier

There is a growing need for the ability to administer MQ from

– Any environment

– Any programming language

– By users who are not expert in MQ

Lots of customers are writing self-service web-portals for

managing their infrastructure, including MQ

**** Message ****

length - 724 of 724 bytes

00000000: 080A 4103 0000 0000 5744 5220 0200 0000 '..A.....WDR‘

00000010: 8800 0000 6700 0000 514D 4752 315F 3230 'ˆ...g...QMGR1_20‘

00000020: 3135 2D31 302D 3239 5F30 392E 3431 2E31 '15-10-29_09.41.1‘

00000030: 3620 2020 2020 2020 2020 2020 2020 2020 '6 ‘

00000040: 2020 2020 2020 2020 514D 4752 3120 2020 ' QMGR1 ‘

00000050: 2020 2020 2020 2020 2020 2020 2020 2020 ' ‘

00000060: 2020 2020 2020 2020 2020 2020 2020 2020 ' ‘

00000070: 2020 2020 2020 2020 0000 0000 0000 0000 ' ‘

00000080: 58CA 0000 0000 0000 0000 0000 0000 0000 'X...............‘

00000090: 644E 4656 2116 4656 3230 3135 2D31 302D 'dNFV!.FV2015-10-‘

000000A0: 3239 2020 0000 0000 3039 2E34 312E 3233 '2909.41.23 ‘

000000B0: 0100 0000 4D51 4D4D 0000 0000 3038 3030 '....MQMM....0800‘

000000C0: 3030 3034 0000 0000 434C 5553 5445 5231 '0004....CLUSTER1‘

000000D0: 2E51 4D47 5231 2020 2020 2020 0B00 0000 '.QMGR1

000000E0: 0800 0000 0200 0000 2020 2020 2020 2020 '........

000000F0: 2020 2020 2020 2020 2020 2020 2020 2020 '

MQ 9.0.1 CD added support for a number of HTTP-based administration capabilities

– Focus on low barrier to entry and ease of use

– MQ Console – a web-browser based graphical administration tool

– MQ REST API – a programmatic administration API

• Enhanced further during CD deliverables 9.0.2, 9.0.3, 9.0.4, and 9.0.5

MQ 9.0.4 CD added support for REST messaging

– Basic point to point messaging

All consolidated into the 9.1 LTS release

Overview

2016 2017 2018

V9.0.1 CD V9.0.2 CD V9.0.3 CD V9.0.4 CD V9.0.5 CD

2019

V9.1 LTS

The mqweb server

Web component

• A new optional install component

• Contains the MQ Console, MQ REST APIs plus prereqs

• WebSphere Liberty Profile which runs the mqweb server

• New USS FMID on z/OS

• JMS9016

MQ installation

Server component

Perhaps a picture would help?

Queue manager

Web component

PCF

Control
commands

NEW

Liberty

mqweb
server

MQ
Console

REST API

HTTP

HTTP

The mqweb server

• The MQ Console and REST API are applications that run in
a WebSphere Liberty Profile (WLP) server called mqweb

• WLP is provided as part of MQ install

• mqweb server definition provided out of the
box when installing the web component

• Once installed

• MQ Console is enabled

• REST API is enabled

• Locked down

CWWKE0001I: The server mqweb has been launched.
CWWKG0028A: Processing included configuration resource: C:\Program
Files\IBM\Latest902\web\mq\etc\mqweb.xml
A CWWKG0028A: Processing included configuration resource: C:\Program Files (x86)\IBM\WebSphere
MQ\web\installations\Latest902\servers\mqweb\mqwebuser.xml
CWWKE0002I: The kernel started after 2.493 seconds
CWWKF0007I: Feature update started.
CWWKO0219I: TCP Channel defaultHttpEndpoint-ssl has been started and is now listening for requests on
host 127.0.0.1 (IPv4: 127.0.0.1) port 9443.
CWWKZ0018I: Starting application com.ibm.mq.rest.
CWWKZ0018I: Starting application com.ibm.mq.console.
SRVE0169I: Loading Web Module: com.ibm.mq.rest.v1.
SRVE0250I: Web Module com.ibm.mq.rest.v1 has been bound to default_host.
CWWKT0016I: Web application available (default_host): https://localhost:9443/ibmmq/rest/v1/
CWWKZ0001I: Application com.ibm.mq.rest started in 0.518 seconds.
SRVE0169I: Loading Web Module: mqconsole.
SRVE0250I: Web Module mqconsole has been bound to default_host.
CWWKT0016I: Web application available (default_host): https://localhost:9443/ibmmq/console/
SRVE0169I: Loading Web Module: com.ibm.mq.consoleinternal.
SRVE0250I: Web Module com.ibm.mq.consoleinternal has been bound to default_host.
CWWKT0016I: Web application available (default_host): https://localhost:9443/ibmmq/console/internal/
CWWKZ0001I: Application com.ibm.mq.console started in 0.525 seconds.
CWWKF0012I: The server installed the following features: [concurrent-1.0, jsp-2.2, servlet-3.1, ssl-1.0, jndi-
1.0, basicAuthenticationMQ-1.0, websocket-1.0, json-1.0, localConnector-1.0, jaxrs-1.1].
CWWKF0008I: Feature update completed in 2.095 seconds.
CWWKF0011I: The server mqweb is ready to run a smarter planet.

Configuring the mqweb server

• Currently done by editing xml (standard WLP approach)

• Although we have provided commands for setting and displaying certain properties

• setmqweb and dspmqweb

• File called mqwebuser.xml provided in MQ data directory

• This is the only part of the WLP xml configuration that we support customers editing:

Security enabled by default

No users defined

Managing the mqweb server

• Distributed: new control commands

• strmqweb, endmqweb

• z/OS: Sample JCL – CSQ4WEBS – provided

• Sets all necessary variables up and then starts
up mqweb server

• Also dspmqweb command on all platforms for
basic monitoring

The MQ Administrative
REST API

What is REST?

REpresentational State Transfer

– Term first coined by Roy Fielding in his PhD thesis

– An architectural style

– Based off his earlier work defining the HTTP and other web based specifications

HTTP is an example of a RESTful architecture

HTTP defines resources (URL/URIs) and the operations (HTTP verbs) which can use them

– Originally used for serving web-pages

– Works really well for APIS too

Generally lightweight and relatively simple to use, much simpler than SOAP web-services

– Have become incredibly common in recent years

However there are lots of interpretations of what it means to be RESTful

– MQ has taken the approach of following best-practice, and adherence to the various w3c standards when
defining its REST API

MQ Admin REST API

• An administrative API for managing MQ via REST

• Messaging API added in 9.0.4

• Is much more intuitive to use than PCF and makes it easier to create MQ tooling, e.g. a self-service
web-browser based MQ portal using JavaScript

• No need for an MQ client!

• Callable from any language which can invoke an HTTPS endpoint

• Most languages now have built in, or easily added, support for REST

• Payload format is JSON (JavaScript Object Notation)

• Human readable, not a binary format

Curly bracket denotes JSON object Square bracket denotes JSON
array

Name, value pair. Where value is of
type string

A nested unnamed
object, in an array

MQ Admin REST API

• Based on underlying MQ capabilities such as PCF and control commands, but adjusted to adhere to
RESTful practices

• URL represent target object for command

GET

POST

DELETE

PATCH

DEFINE

DISPLAY

ALTER

DELETE

HTTP MQSC

+
send
JSON

+

C

R

U

D

Queue
Managersend

JSON

+
receive
JSON

Evolution of the MQ REST APIs

• Iteratively developed in CD releases

– 9.0.1:

• REST API for administration introduced

• Contains ability to list queue managers (dspmq) and their
installation (dspmqver)

• Not integrated into mqweb server/MQ security so disabled by default

– 9.0.2:

• Integrated into mqweb server and MQ security, enabled by default

• Contains CRUD for queues and the ability to display queue status

• Supported on MQ Appliance

– 9.0.3:

• Support for subset of DIS QMSTATUS on all platforms including z/OS

– 9.0.4

• REST API for messaging introduced

• Administration API further enhanced

– Ability to run MQSC commands

– Ability to display channels and subscriptions

• REST API administration gateway introduced

– 9.0.5

• REST API for MFT administration introduced

• Administration gateway support expanded

– 9.1

• Fully supported on all platforms in LTS

Some examples…

GET /ibmmq/rest/v1/admin/qmgr (dspmq)

• Ability to list queue managers associated with installation

• Example below uses curl to list all queue managers

• -k flag tells it to ignore the fact that a self-signed certificate is being used on the mqweb
server, you don’t want to be doing this in production!

GET /ibmmq/rest/v1/admin/qmgr (dspmq)

• Can get information on just a specific queue manager

• GET /ibmmq/rest/v1/admin/qmgr/{qmgrName}

• Can request additional attributes too, or just a sub-set

• GET /ibmmq/rest/v1/admin/qmgr?attributes=*

GET /ibmmq/rest/v1/admin/installation (dspmqver)

•Basic display

•All attributes

Queues…

DEFINE Q*

– POST to /ibmmq/rest/v1/admin/qmgr/{qmgrName}/queue

curl -k -X POST -H "Content-Type: application/json" -d "{\"name\":\"Q1\"}"
https://localhost:9443/ibmmq/rest/v1/admin/qmgr/MQ905/queue

DISPLAY Q*

– GET to /ibmmq/rest/v1/qmgr/admin/{qmgrName}/queue/{queueName}

Queue definition,
very simple in this
case

Sending JSON
payload

Queue manager
name

https://localhost:9443/ibmmq/rest/v1/admin/qmgr/MQ905/queue

Queues…

ALTER Q*

– PATCH to /ibmmq/rest/v1/admin/qmgr/{qmgrName}/queue/{queueName}

– E.g: the following will PUT inhibit Q.LOCAL1

curl -k -X PATCH -H "Content-Type: application/json" -d "{\"general\":{\"inhibitPut\": true}}"
https://localhost:9443/ibmmq/rest/v1/admin/qmgr/QM905/queue/Q.LOCAL1

DELETE Q*

– DELETE to /ibmmq/rest/v1/admin/qmgr/{qmgrName}/queue/{queueName}

https://localhost:9443/ibmmq/rest/v1/admin/qmgr/QM905/queue/Q.LOCAL1

Queues…

Also possible to issue DISPLAY QSTATUS

– GET to
/ibmmq/rest/v1/admin/qmgr/{qmgrName}/queue/{queueName}?status=*&applicationHandle=*

– So you can get both the queue definition and its status at the same time!

Tailored RESTful support for individual MQ
objects and actions are in the works…

However, to speed up full MQ admin support
over REST we will be adding the ability to
submit arbitrary MQSC commands over REST

Gives complete MQSC coverage quickly

Simple to convert existing scripts

 Does not benefit from improved usability

MQSC for REST

HTTPS POST:
https://host:port/ibmmq/v1/admin/action/qmgr/QMGR1/mqsc

{
“type”: “runCommand”,
“parameters”: {

“command”: “STOP CHANNEL(CHANNEL.TEST)”
}

}

Stopping a channel

{
“commandResponse”: [{

“completionCode”: 0,
“reasonCode”: 0,
“text”: [“AMQ8019: Stop IBM MQ channel accepted.”]

}],
“overallCompletionCode” : 0,
“overallReasonCode” : 0

}

Option 1

Administer each MQ installation separately

Option 2

Manage a network of systems through gateway
entry points

Not every queue manager will need to expose
HTTPS endpoints

Pre-version 9.1 queue managers are able to be
administered through 9.1 gateways

REST

HTTP Server

QM QM

REST

HTTP Server

QM QM

REST

HTTP Server

QM

QM

QM

QM

REST

HTTP Server

QM QM

Enabling your whole estate for
REST administration

Two approaches

HTTPS POST:
https://host:port/ibmmq/v1/admin/qmgr/QM1/queue

{
“name”: ”QUEUE.1”,
“type”: ”local”,
“cluster”: {

“name”: “CLUSTER1” }
}

HTTP Response: 201

JSON payload when
defining/updating objects

URL represents target
object for command

HTTP response indicates
success/failure

Per object REST

Native JSON based REST calls

HTTPS POST:
https://host:port/ibmmq/v1/admin/action/qmgr/QMGR1/mqsc

{
“type”: “runCommand”,
“parameters”: {

“command”: “STOP CHANNEL(CHANNEL.TEST)”
}

}
HTTP Response: 201
{

“commandResponse”: [{
“completionCode”: 0,
“reasonCode”: 0,
“text”: [“AMQ8019: Stop IBM MQ channel accepted.”]

}],
“overallCompletionCode” : 0,
“overallReasonCode” : 0

}

MQSC over REST

Shared URL for all MQSC
command inputJSON payload a single

MQSC command

JSON response contains MQSC
output

Direct MQSC command input over REST

MQSC output over REST, minimal parsing

HTTPS POST:
https://host:port/ibmmq/v1/admin/qmgr/QM1/queue

{
“name”: ”QUEUE.1”,
“type”: ”local”,
“cluster”: {

“name”: “CLUSTER1” }
}

HTTP Response: 201

JSON payload when
defining/updating objects

URL represents target
object for command

HTTP response indicates
success/failure

Per object REST

Native JSON based REST calls

HTTPS POST:
https://host:port/ibmmq/v1/admin/action/qmgr/QMGR1/mqsc

{
“type”: “runCommand”,
“parameters”: {

“command”: “STOP CHANNEL(CHANNEL.TEST)”
}

}
HTTP Response: 201
{

“commandResponse”: [{
“completionCode”: 0,
“reasonCode”: 0,
“text”: [“AMQ8019: Stop IBM MQ channel accepted.”]

}],
“overallCompletionCode” : 0,
“overallReasonCode” : 0

}

MQSC over REST

Shared URL for all MQSC
command inputJSON payload a single

MQSC command

JSON response contains MQSC
output

Direct MQSC command input over REST

MQSC output over REST, minimal parsing

Two approaches

o Natural REST APIs
o Restructured definitions to aid understanding
o Further definition validation

o Not a straight swap for existing users
o Incomplete coverage of MQ administration

o Simple mapping from existing scripts
o Complete coverage of MQSC capabilities

o Not pure REST
o Just as simple as existing runmqsc for input

and parsing of output

…

API Discovery

API discovery

Want to find out what is available in the MQ REST API, and don’t want to read the KC?

Then try out API discovery!

Function in WLP that describes the MQ REST API using Swagger

Makes it easier to see what is there, and try it out

API discovery

Security

REST API security

Role based access control. Need
to be a member of at least
one role

– MQWebAdmin

– MQWebAdminRO

– MQWebUser

– MFTWebAdmin

– MFTWebAdminRO

User and groups defined in
a registry

– Basic

– LDAP

– SAF (on z/OS)

– OS (on distributed)

REST is locked down by default,
need to do some configuring

– Samples provided to make
this simpler

REST API authentication

Token based

– User logs in once with user id and password and then gets a cookie which is
used for subsequent requests

curl -k -X POST -H "Content-Type: application/json"
-d "{\"username\":\"mqadmin\",\"password\":\"mqadmin\"}"
https://localhost:9443/ibmmq/rest/v1/login -c c:\temp\cookiejar.txt

– DELETE to the login URL logs out

Or HTTP basic authentication

– User id and password provided as an encoded header, must be set for each
request

User id and password
provided as JSON payload

Cookie stored for use on next
request

REST API authentication

Or use a client certificate

– Must be provided with each call to the REST API

– Distinguished name from certificate is mapped to user in configured user
registry

The MQ Console

MQ Console

• Browser based interface for administering and managing MQ

• No client side install needed

• Originally available in MQ Appliance only

• As of 9.0.1 a common capability across appliance and software MQ

• Re-engineered on AngularJS so different implementation than on 8.0.0.* appliance

• Functional parity with MQ Console in 8.0.0.* appliance

• Some capabilities not available on z/OS

• Can’t create/delete/start/stop queue managers, etc

• Can only interact with queue managers running in the same installation

• On z/OS all queue managers at the same VRM level

MQ Console – log in
Point your web-browser at the MQ Console and log in

– With a user id and password

– With a client certificate

Log in credentials validated
via user registry configured
in the mqweb server

– Like the REST API

Access determined by role

– Same role names as REST API

– But in a different name space so
REST users don’t need to have
same access as MQ Console
users

MQ Console – add widgets
Console dashboard consists of a number of widgets, each widget shows information for a particular set of
MQ objects: queue managers, queues, etc.

MQ Console – add widgets
Console dashboard consists of a number of widgets, each widget shows information for a particular set of
MQ objects: queue managers, queues, etc.

MQ Console – add widgets
Console dashboard consists of a number of widgets, each widget shows information for a particular set of
MQ objects: queue managers, queues, etc.

MQ Console – layout

Can use multiple tabs to help manage content

Each user can lay out their dashboard according to their needs

Can export dashboard to share layout with others

MQ Console – manage
Monitor your MQ queue managers using
charts generated from statistics information
published to system topics

– added in 9.0.0 on distributed platforms

Display and alter objects using the
properties editor

Browse and send messages

Provides a sub-set of MQ Explorer function

Summary

• Current options, and why we need something else

• The mqweb server

• The MQ administrative REST API

• Examples

• API Discovery

• Security

• The MQ Console

Notices and disclaimers

• © 2018 International Business Machines Corporation.

No part of this document may be reproduced or transmitted in

any form without written permission from IBM.

• U.S. Government Users Restricted Rights — use,

duplication or disclosure restricted by GSA ADP Schedule

Contract with IBM.

• Information in these presentations (including information relating

to products that have not yet been announced by IBM) has been

reviewed for accuracy as of the date of initial publication

and could include unintentional technical or typographical

errors. IBM shall have no responsibility to update this

information. This document is distributed “as is” without any

warranty, either express or implied. In no event, shall IBM

be liable for any damage arising from the use of this

information, including but not limited to, loss of data,

business interruption, loss of profit or loss of opportunity.

IBM products and services are warranted per the terms and

conditions of the agreements under which they are provided.

• IBM products are manufactured from new parts or new and

used parts.

In some cases, a product may not be new and may have been

previously installed. Regardless, our warranty terms apply.”

• Any statements regarding IBM's future direction, intent or

product plans are subject to change or withdrawal without

notice.

• Performance data contained herein was generally obtained in a

controlled, isolated environments. Customer examples are

presented as illustrations of how those

• customers have used IBM products and the results they may have

achieved. Actual performance, cost, savings or other results in

other operating environments may vary.

• References in this document to IBM products, programs, or

services does not imply that IBM intends to make such products,

programs or services available in all countries in which

IBM operates or does business.

• Workshops, sessions and associated materials may have been

prepared by independent session speakers, and do not

necessarily reflect the views of IBM. All materials and discussions

are provided for informational purposes only, and are neither

intended to, nor shall constitute legal or other guidance or advice

to any individual participant or their specific situation.

• It is the customer’s responsibility to insure its own compliance

with legal requirements and to obtain advice of competent legal

counsel as to the identification and interpretation of any

relevant laws and regulatory requirements that may affect the

customer’s business and any actions the customer may need to

take to comply with such laws. IBM does not provide legal advice

or represent or warrant that its services or products will ensure

that the customer follows any law.

Notices and disclaimers
continued
• Information concerning non-IBM products was obtained from the suppliers

of those products, their published announcements or other publicly

available sources. IBM has not tested those products about this publication

and cannot confirm the accuracy of performance, compatibility or any other

claims related to non-IBM products. Questions on the capabilities of non-

IBM products should be addressed to the suppliers of those products.

IBM does not warrant the quality of any third-party products, or the ability of

any such third-party products to interoperate with IBM’s products. IBM

expressly disclaims all warranties, expressed or implied, including but

not limited to, the implied warranties of merchantability and fitness for

a purpose.

• The provision of the information contained herein is not intended to, and

does not, grant any right or license under any IBM patents, copyrights,

trademarks or other intellectual property right.

• IBM, the IBM logo, ibm.com and [names of other referenced

IBM products and services used in the presentation] are

trademarks of International Business Machines Corporation,

registered in many jurisdictions worldwide. Other product and

service names might be trademarks of IBM or other

companies. A current list of IBM trademarks is available on

the Web at "Copyright and trademark information" at:

www.ibm.com/legal/copytrade.shtml.

• .

http://www.ibm.com/legal/copytrade.shtml

Thank you

© 2018 IBM Corporation

