
© 2016 IBM Corporation

© 2017 IBM Corporation

Mark Taylor

marke_taylor@uk.ibm.com

Open Source Monitoring

for IBM MQ

© Copyright IBM Corporation 2017

Please Note:

• IBM’s statements regarding its plans, directions, and intent are subject to change or withdrawal without notice at IBM’s sole
discretion.

• Information regarding potential future products is intended to outline our general product direction and it should not be
relied on in making a purchasing decision.

• The information mentioned regarding potential future products is not a commitment, promise, or legal obligation to deliver
any material, code or functionality. Information about potential future products may not be incorporated into any contract.

• The development, release, and timing of any future features or functionality described for our products remains at our sole
discretion.

• Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. The
actual throughput or performance that any user will experience will vary depending upon many factors, including
considerations such as the amount of multiprogramming in the user’s job stream, the I/O configuration, the storage
configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve results
similar to those stated here.

© Copyright IBM Corporation 2017

Queue

Manager

MQ Administration

ini files

OS commandsMQSC

commands

PCF

commands

Events (async)

Status (polled)

OS configuration

These are all documented and supported

interfaces – it has encouraged a

management ecosystem over many years
Log files

© Copyright IBM Corporation 2017

IBM MQ - MQSC

• Command line interface

• V8 enhanced runmqsc

– Make it world-executable

– Enable direct client-connection

• MQSC intended for human consumption

– Parsable by eye, less easy in programs

– For example, DESCR('This is 'a' description with quote & paren(')

– No guaranteed ordering in runmqsc, two-column output

• Despite awkwardness, basis for many script-based admin tools

– echo "DISPLAY Q(X) IPPROCS" | runmqsc QM1

• Same commands – different front-end (CSQUTIL) – for z/OS

Old Example: AIX smit panels

© Copyright IBM Corporation 2017

IBM MQ - PCF

• A "self-describing" MQ message used for administrative operations

• Your programs can send commands and get responses using PCF

– Equivalent to "DISPLAY QSTATUS" or "ALTER CHANNEL"

• MQ emits events in PCF format

– "Queue is getting full"

• PCF intended for programs – usually C or Java

– Can tell exactly what the parameter is for, its length and value

– But cannot easily be scripted

• Approximately one-one mapping between MQSC commands and PCF

• Remember that PCF invented before formats like JSON or XML

– And there are many MQ apps that are built on PCF

© Copyright IBM Corporation 2017

An event message

**** Message length - 300 of 300 bytes ***

00000000: 0000 0007 0000 0024 0000 0003 0000 0063 '.......$.......c'

00000010: 0000 0001 0000 0001 0000 0000 0000 096C '...............l'

00000020: 0000 0002 0000 0014 0000 0010 0000 1F41 '...............A'

00000030: 0000 0004 0000 0004 0000 0020 0000 0BE5 '........... ...å'

00000040: 0000 0333 0000 000C 6D65 7461 796C 6F72 '...3....metaylor'

00000050: 2020 2020 0000 0003 0000 0010 0000 03F3 ' ó'

00000060: 0000 0001 0000 0004 0000 0044 0000 0BE7 '...........D...ç'

00000070: 0000 0333 0000 0030 5638 3030 335F 4120 '...3...0V8003_A '

00000080: 2020 2020 2020 2020 2020 2020 2020 2020 ' '

00000090: 2020 2020 2020 2020 2020 2020 2020 2020 ' '

000000A0: 2020 2020 2020 2020 0000 0003 0000 0010 ' '

000000B0: 0000 03FD 0000 005A 0000 0014 0000 0010 '...ý...Z........'

000000C0: 0000 1F42 0000 0004 0000 0004 0000 0018 '...B............'

000000D0: 0000 0BFB 0000 0000 0000 0001 5800 0000 '...û........X...'

000000E0: 0000 0003 0000 0010 0000 03F8 0000 0001 '...........ø....'

000000F0: 0000 0006 0000 0024 0000 0BF9 0000 0000 '.......$...ù....'

00000100: 0000 0001 0000 0008 6D65 7461 796C 6F72 '........metaylor'

00000110: 0000 0000 0000 0005 0000 0018 0000 045C '...............\'

00000120: 0000 0002 0000 000B 0000 0009 '............ '

© Copyright IBM Corporation 2017

**** Message length - 300 of 300 bytes ***

00000000: 0000 0007 0000 0024 0000 0003 0000 0063 '.......$.......c'

00000010: 0000 0001 0000 0001 0000 0000 0000 096C '...............l'

00000020: 0000 0002 0000 0014 0000 0010 0000 1F41 '...............A'

00000030: 0000 0004 0000 0004 0000 0020 0000 0BE5 '........... ...å'

00000040: 0000 0333 0000 000C 6D65 7461 796C 6F72 '...3....metaylor'

00000050: 2020 2020 0000 0003 0000 0010 0000 03F3 ' ó'

00000060: 0000 0001 0000 0004 0000 0044 0000 0BE7 '...........D...ç'

00000070: 0000 0333 0000 0030 5638 3030 335F 4120 '...3...0V8003_A '

00000080: 2020 2020 2020 2020 2020 2020 2020 2020 ' '

00000090: 2020 2020 2020 2020 2020 2020 2020 2020 ' '

000000A0: 2020 2020 2020 2020 0000 0003 0000 0010 ' '

000000B0: 0000 03FD 0000 005A 0000 0014 0000 0010 '...ý...Z........'

000000C0: 0000 1F42 0000 0004 0000 0004 0000 0018 '...B............'

000000D0: 0000 0BFB 0000 0000 0000 0001 5800 0000 '...û........X...'

000000E0: 0000 0003 0000 0010 0000 03F8 0000 0001 '...........ø....'

000000F0: 0000 0006 0000 0024 0000 0BF9 0000 0000 '.......$...ù....'

00000100: 0000 0001 0000 0008 6D65 7461 796C 6F72 '........metaylor'

00000110: 0000 0000 0000 0005 0000 0018 0000 045C '...............\'

00000120: 0000 0002 0000 000B 0000 0009 '............ '

An event message

TYPE (cfst) LEN (24)

LEN (1)CCSID (0)PARM (MQCA…) DATA

© Copyright IBM Corporation 2017

Event formatting C sample in V8.0.0.4

• No sample previously shipped to format all "standard" events

– Authorisation, queue full, service interval, command/config etc

– Other samples are available for acct/stats, activity reports

– Several SupportPacs but product only has out-of-date source code in the KC

• The amqsevt program formats events into readable English-ish text

– Option to stay with full MQI constant name instead of making it look nice

– Uses MQCB to read from multiple event queues. No polling required

– Can connect as client to any remote queue manager including z/OS

– Source code included

• Includes C header file to help convert MQI numbers to strings

– Similar to Java MQConstants.lookup() capability for all sets of constants

printf("Error is %s\n",MQRC_STR(2035));

© Copyright IBM Corporation 2017

An event message decoded

Event Type : Command Event

Reason : Command MQSC

Event created : 2015/06/03 13:28:20.51 GMT

Correlation ID : 414D512056383030335F412020202020556F00F120001E05

COMMAND CONTEXT

Event User Id : metaylor

Event Origin : Console

Event Queue Mgr : V8003_A

Command : Set Auth Rec

COMMAND DATA

Auth Profile Name : X

Object Type : Queue

Principal Entity Names: metaylor

Auth Add Auths : Output

: Input

© Copyright IBM Corporation 2017

Third-party solutions

• Many vendor products – this screenshot from ITCAM/Omegamon

© Copyright IBM Corporation 2017

Application Activity inside MQ Explorer using MS0P

© Copyright IBM Corporation 2017

Many people now using different tools

• Because they are using those

tools for other products

• And because MQ is being used

in more environments

• Therefore MQ has to be able to

be integrated with them

https://developer.ibm.com/messaging/mq-on-

cloud/

© Copyright IBM Corporation 2017

Decided to demonstrate MQ integration

• Using the V9 resource statistics data

• Feeding a variety of monitoring tools

• And doing it in public – Github, blog articles etc

– See github.com/ibm-messaging/mq-golang

– Video at youtube.com/watch?v=Pi_jHCiqTgU

© Copyright IBM Corporation 2017

System Monitoring with V9

• More statistics available via a pub/sub model

• Includes CPU and Disk usage

– As well as many MQ statistics

– Not full replacement for accouting/statistics events but many key values

• Subscribe to meta-topic to learn which classes of statistics are available

– $SYS/MQ/INFO/QMGR/<qmgr>/Monitor/METADATA/CLASSES

– Then subscribe to specific topics

– See amqsrua sample program

• Distributed platforms only
RFE 71123

© Copyright IBM Corporation 2017

System Monitoring Example

$ amqsrua -m V9000_A

CPU : Platform central processing units

DISK : Platform persistent data stores

STATMQI : API usage statistics

STATQ : API per-queue usage statistics

Enter Class selection

==>

This capability already

underpins the charting in

the MQ Appliance WebUI

$ amqsrua -m V9000_A

CPU : Platform central processing units

DISK : Platform persistent data stores

STATMQI : API usage statistics

STATQ : API per-queue usage statistics

Enter Class selection

==> CPU

SystemSummary : CPU performance - platform wide

QMgrSummary : CPU performance - running queue manager

Enter Type selection

==>

$ amqsrua -m V9000_A

CPU : Platform central processing units

DISK : Platform persistent data stores

STATMQI : API usage statistics

STATQ : API per-queue usage statistics

Enter Class selection

==> CPU

SystemSummary : CPU performance - platform wide

QMgrSummary : CPU performance - running queue manager

Enter Type selection

==> SystemSummary

Publication received PutDate:20160411 PutTime:10465573

User CPU time percentage 0.01%

System CPU time percentage 1.30%

CPU load - one minute average 8.00

CPU load - five minute average 7.50

CPU load - fifteen minute average 7.30

RAM free percentage 2.02%

RAM total bytes 8192MB

© Copyright IBM Corporation 2017

Monitoring Architecture

• Architecture is split – database and user interface

– The database is usually a "time-series" DB, not traditional SQL

– Designed and optimised for {timestamp, metric, value} storage and queries

• These databases include Prometheus, InfluxDB, OpenTSDB

• Collection architecture may have intermediate layers – collectd

Queue Manager Collector Database Web Server/GUI

Docker containers

Queue Manager Collector
Queue Manager Collector

© Copyright IBM Corporation 2017

Started with Prometheus

• Seemed to be one of the most popular

• Which does have its own limited GUI

• Model is "pull" – calls a collector program at intervals via http

– Most other DBs are "push" where collector sends to DB at interval

• Standard API for getting data to Prometheus is in Go

– And we had no Go API for MQ …

© Copyright IBM Corporation 2017

The Go API for MQ

• So first off, I had to create a new language binding

– Based on full MQI rather than a "simplified" version

– But not all function implemented

– Trying to make it look natural to Go programmers

if err == nil {

putmqmd := ibmmq.NewMQMD()

pmo := ibmmq.NewMQPMO()

pmo.Options = ibmmq.MQPMO_SYNCPOINT | ibmmq.MQPMO_NEW_MSG_ID

putmqmd.Format = "MQSTR"

msgData := "Hello from Go"

buffer := []byte(msgData)

err = qObject.Put(putmqmd, pmo, buffer)

if err != nil {

fmt.Println(err)

}

}

© Copyright IBM Corporation 2017

Working with the Go API

• Ensured bindings had functions I needed including PCF generation and parsing

• Started with RESET QSTATS as PoC for hooking to Prometheus

– But rapidly went to full amqsrua-style metadata subscriptions

• After first release of Go bindings, extensions made for more verbs and options

– Including client connections via MQCNO/MQCD structures

– MQSET

– Information on building for Windows

• Still subject to change

© Copyright IBM Corporation 2017

Collector configurations

• Collector subscribes to all data for qmgr (cpu, disk etc) and nominated queues

– Command line parameters name the queues with wildcards

• Started via MQ Service definition and shell script

• Can connect as client to remote queue managers including MQ appliance

– Any system that supports the resource statistics

– One collector instance per queue manager

/usr/local/bin/mqgo/mq_prometheus -ibmmq.queueManager=QM1

-ibmmq.monitoredQueues=APP.*,MYQ.*

-ibmmq.httpListenPort=9157

-log.level=error

© Copyright IBM Corporation 2017

Prometheus configuration

• File prometheus.yml defines configuration

– Built copy of this into Docker image

– Two targets for two collectors on this system (queue manager, Salesforce bridge)

scrape_configs:

Job name added as label `job=<job_name>` to any timeseries scraped from this config

- job_name: 'prometheus'

Override the default and scrape targets from this job every 5 seconds.

scrape_interval: 5s

metrics_path defaults to '/metrics'

scheme defaults to 'http'.

static_configs:

- targets: ['localhost:9090']

- job_name: 'ibmmq'

scrape_interval: 5s

static_configs:

- targets: ['klein.hursley.ibm.com:9157', 'klein.hursley.ibm.com:9158']

© Copyright IBM Corporation 2017

Grafana

• Although Prometheus has a GUI it is not very sophisticated

• Instead, prefer to use Grafana as visualisation tool

– Supports many different backend databases

– Understands the metric names, query capabilities etc of each

© Copyright IBM Corporation 2017

Accessing queue stats from Prometheus in Grafana

© Copyright IBM Corporation 2017

Grafana dashboard

© Copyright IBM Corporation 2017

Then added more variants

• Rapidly added support for influx, opentsdb

– Different collectors with slightly different parameters

• Graphite is another database, but fed via collectd

– collectd can also feed the database used by bluemix

• Also added an AWS collector for CloudWatch

• Generic JSON formatting

{ "collectionTime" : {

"timeStamp" : "2016-11-07-T15:00:55Z"

"epoch" : 1478527255 },

"points" : [

{ "queueManager" : "QM1", "ramTotalBytes" : 15515735206 },

{ "queueManager" : "QM1", "userCpuTimePercentage" : 1.33 }

]

}

© Copyright IBM Corporation 2017

Four equivalent Grafana dashboards

© Copyright IBM Corporation 2017

Metric Queries

• Influx

• OpenTSDB

• Graphite/Collectd

© Copyright IBM Corporation 2017

More resources – the MQ Bridge to Salesforce

© Copyright IBM Corporation 2017

AWS Cloudwatch

© Copyright IBM Corporation 2017

What are differences? Which is best?

• Differences are generally in

– The names and formats of metrics ("ibmmq_mqobject_mqget")

– Naming for individual resources such as the queue name

– Query capabilities to select and display chosen metrics

• Can you use wildcards on object names

– Creating labels on graphs

• Can it be automatic based on the query?

• The best is going to be whatever you are already using!

– But I found the Prometheus/Grafana combination to be flexible and usable

© Copyright IBM Corporation 2017

Processing other MQ events

• Already shown amqsevt as shipped in MQ

• Also available is JSON variety

– Available at https://gist.github.com/ibmmqmet/fabd57f4ff5c6e1b8d78284b2bc65f9e

• Used to feed JSON consumers such as splunk

© Copyright IBM Corporation 2017

MQ events in splunk

© Copyright IBM Corporation 2017

Error log collection

• MQ error logs can also be fed to monitors

– Define filters to extract interesting information from the error messages

• Several articles published on using Bluemix (Kibana) and Cloudwatch

https://www.ibm.com/developerworks/community/blogs/messaging/entry/Sending_MQ_logs_to_the_Bluemix_Logmet_serv

ice?lang=en

https://www.ibm.com/developerworks/community/blogs/messaging/entry/mq_aws_cloudwatch_logs?lang=en

https://www.ibm.com/developerworks/community/blogs/messaging/entry/Monitoring_and_Exploring_IBM_MQ_AMQERR_l

ogs_on_Bluemix_using_logmet?lang=en

https://www.ibm.com/developerworks/community/blogs/messaging/entry/Sending_MQ_logs_to_the_Bluemix_Logmet_service?lang=en
https://www.ibm.com/developerworks/community/blogs/messaging/entry/mq_aws_cloudwatch_logs?lang=en
https://www.ibm.com/developerworks/community/blogs/messaging/entry/Monitoring_and_Exploring_IBM_MQ_AMQERR_logs_on_Bluemix_using_logmet?lang=en

© Copyright IBM Corporation 2017

Analysing MQ error logs in Bluemix

© Copyright IBM Corporation 2017

Similar resource data available on z/OS but via SMF

• By popular demand … open source tool to format MQ z/OS SMF records for

easy import to spreadsheets and databases

– http://github.com/ibm-messaging/mq-smf-csv

– http://youtube.com/marktaylorhursley

© Copyright IBM Corporation 2017

How it looks in DB2

© Copyright IBM Corporation 2017

Example queries

• What was my largest message size retrieved for this queue?

– SELECT MAX(Get_Max_Msg_Size) from MQSMF.WQ where (Base_Name=

‘LYNS.TEST.QUEUE');

– Result was 11,189 (application people insisted it was 3,800)

• How many MQPUTs and MQPUT1s were completed?

– SELECT SUM (Put_Count), SUM (Put1_Count) from MQSMF.WQ where (

Base_Name = ‘LYNS.TEST.QUEUE');

– Results:

© Copyright IBM Corporation 2017

Summary

• MQ can be easily integrated with a variety of tools

• The pub/sub model for statistics makes it easy to add new consumers

– Without disrupting any existing monitors

– And makes it possible to add your own producers

• Using github for repository of code enables easy modification and sharing

• And the MQDev blog for documenting what we have done

© Copyright IBM Corporation 2017

Any questions?

