
Click to add text

© 2014 IBM Corporation

Secure Your Messages with IBM MQ
Advanced Message Security

Robert Parker

parrobe@uk.ibm.com



© 2014 IBM Corporation

Agenda

• Message Level Security

• Digital Cryptography 101 (Keys, hashes, Alice & Bob)

• WebSphere MQ Advanced Message Security Introduction

• Administration

• Architecture

• Behaviour

• Performance

• Implementing AMS



© 2014 IBM Corporation

Message Level Security – Where to use it?

 “Valuable” messages

– In flight on the network

– At rest, on disk

– Monitoring and control messages

 Large networks, difficult to prove security of messages

– Injection

– Modification

– Unauthorized viewing



© 2014 IBM Corporation

Message Level Security – Where to use it?

 Data subject to standards compliance (PCI, HIPAA, etc)

– Credit card data protected by PCI

– Confidential government data

– Personal information e.g. healthcare

– Data at rest, administrative privileges, etc



© 2014 IBM Corporation

Message Level Security - Requirements

 Assurance that messages have not been altered in transit

– When issuing payment information messages, ensure the payment amount does not change before 
reaching the receiver

 Assurance that messages originated from the expected source 

– When processing control messages, validate the sender

 Assurance that messages can only be viewed by intended recipient(s)

– When sending confidential information



© 2014 IBM Corporation

Digital Cryptography 101



© 2014 IBM Corporation

Cryptography Choices

 Symmetric Key
– Single secret key

– Relatively fast

– Poses key distribution challenges when faced with large numbers of senders/receivers

– The key has to be known by the sender and receiver

 Asymmetric Keys
– Private & Public key pairing

– Message encrypted with one key can only be decrypted by the other one

– Slower than symmetric key cryptography

– Asymmetric Keys can be used to solve the key distribution challenges associated with symmetric keys



© 2014 IBM Corporation

Symmetric Key Cryptography

DecryptionEncryption

plaintext









ciphertext plaintext



© 2014 IBM Corporation

Asymmetric Key Cryptography

DecryptionEncryption

plaintext plaintext

Bob

Bob's Public Key Bob's Private Key











ciphertext



© 2014 IBM Corporation

Hash Functions

 Hash 
Function

hhhhhhhhMessage of length nMessage of length n

Fixed Fixed 

length, length, 

short short 

numbernumber

Fixed Fixed 

length, length, 

short short 

numbernumber

Fixed Fixed 
length, length, 
short short 
numbernumber

Fixed Fixed 
length, length, 
short short 
numbernumber

Hash Function
– Computes the message MAC (Message Authentication Code)

– Easy to compute

– Very difficult to reverse

– Computationally infeasible to find two messages that hash to the same value



© 2014 IBM Corporation

Digital Signatures

Alice Alice's 

plaintext

hhhh
Hash

Function
hhhh

Alice "signs" the 

hash (encrypts the 

hash with her 

private key)

Bob

Bob decrypts the 

signed hash with 

Alice's public key

hhhh hhhh

hhhh
Hash

Function

Bob hashes the plaintext 

to derive the hash

If hashes match:

ƒOnly Alice could 

have signed

ƒPlaintext didn't 

change in transit



© 2014 IBM Corporation

AMS Introduction



© 2014 IBM Corporation

WebSphere MQ Advanced Message Security

Sending

App

Receiving

App

MQ Msg

&@Ja^!
&@Ja^!

MQ Msg



© 2014 IBM Corporation

WebSphere MQ Advanced Message Security – Key points

 Provides additional security to that provided by base MQ

 End-to-end security, message level protection

– A security policy defines what protection should be applied to messages

– AMS intercepts messages at “endpoints” and applies the policy

– Well suited to point to point, can also protect publish/subscribe but...

– … have to know the identity of the intended recipients ahead of operation

 Asymmetric cryptography used to protect each message

– Integrity Policies prove message origin, content not changed

– Privacy policies as per integrity plus each message encrypted with unique key



© 2014 IBM Corporation

WebSphere MQ Advanced Message Security – Key points

 Non-invasive

– No code changes or re-linking of applications

 Administrative interfaces for policy management

– Command line

– MQ Explorer (Security Policies - now a default plugin)



© 2014 IBM Corporation

WebSphere MQ Advanced Message Security – Security Features

 AMS is an optional component of MQ, not a replacement to base MQ security

 WebSphere MQ base 

– Authentication (Local OS user id, SSL peer and CHLAUTH for channels)

– Authorization (OAM and CHLAUTH on distributed, RACF on z/OS)

– Integrity (SSL for channels)

– Privacy (SSL for channels)

 WebSphere MQ Advanced Message Security

– Integrity (End-to-end digital signing of messages)

– Privacy (End-to-end message content encryption)



© 2014 IBM Corporation

WebSphere MQ Advanced Message Security – Limitations

 The following MQ Options are not supported with AMS

– Publish/Subscribe

– Channel Data Conversion

– Distribution lists



© 2014 IBM Corporation

Administration



© 2014 IBM Corporation

WebSphere MQ Advanced Message Security – Commands

 Command line tools

– setmqspl : Set message protection policy

• -m Queue manager

• -p Policy name (matches queue name used in application)

• -s Signing algorithm (MD5, SHA1, SHA256, SHA384, SHA512)

• -a Authorised signers (Signed messages - DN list)

• -e Encryption algorithm (RC2, DES, 3DES, AES128, AES256)

• -r Message recipients (Encrypted messages - DN list)

– dspmqspl : Display message protection policies

• -m Queue manager

• [-export]

• [-p Policy name]



© 2014 IBM Corporation

WebSphere MQ Advanced Message Security
Security Policies in MQ Explorer



© 2014 IBM Corporation

Architecture



© 2014 IBM Corporation

WebSphere MQ Advanced Message Security - Architecture

MCA

Queue

Manager
OK?

y/n

MQ 

Application

AMS Intercept

Key

Store

Object

Authority 

Manager



© 2014 IBM Corporation

WebSphere MQ Advanced Message Security – Architecture 
(MCA Interception)

MCA

Queue

Manager
OK?

y/n

MQ Client 

Application

AMS Intercept
Key

Store

Object

Authority 

Manager



© 2014 IBM Corporation

WebSphere MQ AMS – Signed Message Format (Integrity Policy)

Message Data

Message Data

PDMQ Header

PKCS #7 Envelope

Signature

Original MQ Message AMS Signed Message

Message PropertiesMessage Properties



© 2014 IBM Corporation

WebSphere MQ AMS – Encrypted Message Format (Privacy Policy)

Message Data

Message Data

PDMQ Header

PKCS #7 Envelope

Signature

Original MQ Message
AMS Encrypted Message

Message PropertiesMessage Properties

Key encrypted with certificate

Data encrypted with key



© 2014 IBM Corporation

AMS Encrypted Message

WebSphere MQ AMS – Encrypted Message Format (Privacy Policy)

Message Data

Message Data

PDMQ Header

PKCS #7 Envelope

Signature

Original MQ Message

Message PropertiesMessage Properties

Key encrypted with certificate 1

Data encrypted with key

Key encrypted with certificate 2

…



© 2014 IBM Corporation

Behaviour



© 2014 IBM Corporation

When will my message be protected?

 Messages are protected when they are created

– Level of protection depends on Policy: None, Integrity, Privacy

– Policies apply to all Queue Types: Remote, Alias, Local

 During MQOPEN call, policies are queries

– Look for policies named the same as the Object being opened.

 Once protected, the message retains the policy for it’s lifetime.

 At MQPUT:

– If there is a policy (regardless of type) we sign the message data

– If it is a privacy policy we encrypt for the specified recipients

 At MQGET

– If there is a privacy policy we will decrypt the using our certificate or error

– If there is a policy we check the message was signed by a signer listed in the policy



© 2014 IBM Corporation

When will my message be protected?

Sending

App
Receiving

AppRemoteQ

Alice Bob

RemoteQ

Privacy

Recipient : Bob

Encryp: SHA256

Signer : <>

SignAl: SHA256

LocalQ

LocalQ

Privacy

Recipient : <>

Encryp: SHA256

Signer : Alice

SignAl: SHA256

1. Alice’s Application Calls MQOPEN on RemoteQ

2. MQOPEN Queries for Policy called RemoteQ and passes info back

XMITQ



© 2014 IBM Corporation

When will my message be protected?

Sending

App
Receiving

AppRemoteQ

Alice Bob

LocalQ

3. Alice issues a MQPUT to RemoteQ

a) Because there is a policy AMS signs the message data 

b) If the policy is a Privacy policy it also encrypts it for the recipients

4. The message is put to RemoteQ and flows over to the LocalQ

Alice
RemoteQ

Privacy

Recipient : Bob

Encryp: SHA256

Signer : <>

SignAl: SHA256

LocalQ

Privacy

Recipient : <>

Encryp: SHA256

Signer : Alice

SignAl: SHA256

XMITQ



© 2014 IBM Corporation

When will my message be protected?

Sending

App
Receiving

AppRemoteQ

Alice Bob

LocalQ

5. Bob Issues an MQOPEN call to LocalQ

6. MQOPEN queries for any policies called LocalQ and returns the info

RemoteQ

Privacy

Recipient : Bob

Encryp: SHA256

Signer : <>

SignAl: SHA256

LocalQ

Privacy

Recipient : <>

Encryp: SHA256

Signer : Alice

SignAl: SHA256

XMITQ



© 2014 IBM Corporation

When will my message be protected?

Sending

App
Receiving

AppRemoteQ

Alice Bob

LocalQ

7. Bob Issues MQGET 

a) Checks the Encryption Algorithm used is same or stronger

b) Checks Bob can decrypt the message

c) Checks the Signing Algorithm used is same or stronger

d) Checks the message was from an authorised signer listed in the policy

8. Bob reads his message

Alice

RemoteQ

Privacy

Recipient : Bob

Encryp: SHA256

Signer : <>

SignAl: SHA256

LocalQ

Privacy

Recipient : <>

Encryp: SHA256

Signer : Alice

SignAl: SHA256

XMITQ



© 2014 IBM Corporation

Error conditions

 Several scenarios where something could go wrong:

– Putting to a protected Queue without Client AMS setup

– GET/BROWSE a message you are not a recipient for

– GET/BROWSE a message signed by someone not authorized

– GET/BROWSE a message that has NOT been protected (got onto Q via AliasQ/RemoteQ etc)

– Signing or encryption Algorithm in message is weaker than policy dictates during GET/BROWSE

– Do not have correct certificates for the all listed Recipients 

– Misspelt Distinguished names for Authorized Signers or Recipients

– Recipient does not have the signers certificate

– Unlike SSL/TLS - full trust chain is not supplied. E.g. Signer cert, Intermediate CA cert, CA cert, etc

– Error with Key Store configuration – Key Store Permissions, stanzas, etc

 What happens depends on operation being performed:

– MQPUT – 2063 Error returned and message not accepted

– MQGET – 2063 Error returned and message is moved to SYSTEM.PROTECTION.ERROR Queue

– MQBROWSE – 2063 Error returned

– Key Store related problems 2035



© 2014 IBM Corporation

Performance



© 2014 IBM Corporation

Performance considerations

 As with all cryptographic operations - there is a decrease in performance

 No official figures to performance impact. Varies wildly by application

– 1 message per second -> 1 message per second

– 500 messages per second -> 400~ message per second

– 10,000 messages per second -> 500~ message per second

– (Actual figures are likely to vary wildly depending on numerous reasons)

 Privacy Policies affect performance more than Integrity Policies



© 2014 IBM Corporation

Implementation



© 2014 IBM Corporation

Implementing AMS – Application Changes

Alice’s

Sending/Receiving 

AppKeystore

AliceCertificate

Keystore.conf

cms.keystore=/…/Keystore

cms.certificate=AliceCertificate

MQS_KEYSTORE_CONF=/…/Keystore.conf

(Or create Keystore.conf in home directory)

No Changes Necessary!



© 2014 IBM Corporation

How to secure an existing MQ application – No protection

STOCK
Sending

App

Receiving

App

ORDERSAlice Bob



© 2014 IBM Corporation

How to secure an existing MQ application - SPLCAP(ENABLED)

STOCK
Sending

App
Receiving

App

ORDERSAlice Bob

1.Install WebSphere MQ AMS Component on server



© 2014 IBM Corporation

How to secure an existing MQ application – Assign Certificates

STOCK
Sending

App

Receiving

App

ORDERSAlice Bob

Keystore

Alice Private

Alice Public

Keystore

Bob Private

Bob Public

1.Install WebSphere MQ AMS Component on server

2.Create certificates (public / private key pairs)



© 2014 IBM Corporation

How to secure an existing MQ application – Assign Certificates

 Key Store and certificate creation using runmqckm, runmqakm or strmqikm

 runmqakm –keydb –create –db Alice.kdb –pw passw0rd –stash

 runmqakm –keydb –create –db Bob.kdb –pw passw0rd –stash

 Runmqakm –cert –create –db Alice.kdb –stashed –dn
CN=ALICE,O=IBM,C=UK –label AliceCert

 Runmqakm –cert –create –db Bob.kdb –stashed –dn
CN=BOB,O=IBM,C=UK –label BobCert



© 2014 IBM Corporation

How to secure an existing MQ application – Exchange Public Key

STOCK
Sending

App
Receiving

App

ORDERSAlice Bob

Keystore

Alice Private

Alice Public

Bob Public

Keystore

Bob Private

Bob Public

Alice Public

3.Exchange public keys



© 2014 IBM Corporation

How to secure an existing MQ application – Exchange Public Key

 Extract and Exchange certificates using runmqckm, runmqakm or strmqikm

 runmqakm –cert –extract –db Bob.kdb –stashed –label BobCert –
target bob.cer

 runmqakm –cert –extract –db Alice.kdb –stashed –label AliceCert –
target alice.cer

 Runmqakm –cert –add –db Alice.kdb –stashed –file bob.cer –label 
BobCert

 Runmqakm –cert –add –db Bob.kdb –stashed –file alice.cer –label 
AliceCert



© 2014 IBM Corporation

How to secure an existing MQ application – Set security policy

STOCK
Sending

App

Receiving

App

ORDERSAlice Bob

Keystore

Alice Private

Alice Public

Bob Public

Keystore

Bob Private

Bob Public

Alice Public

Policy

ORDERS

Privacy

Recipient : Bob

Signer : Alice

3.Exchange public keys

4.Define security policy for the queue



© 2014 IBM Corporation

How to secure an existing MQ application – Set security policy

 Set Security Policy using setmqspl or MQ Explorer

 Setmqspl –m STOCK –p ORDERS –s SHA256 –a 
“CN=ALICE,O=IBM,C=UK” –e AES256 –r “CN=BOB,O=IBM,C=UK”



© 2014 IBM Corporation

How to secure an existing MQ application – Privacy & Integrity

STOCK
Sending

App

Receiving

App

ORDERSAlice Bob

Keystore

Alice Private

Alice Public

Bob Public

Keystore

Bob Private

Bob Public

Alice Public

Policy

ORDERS

Privacy

Recipient : Bob

Signer : Alice

5.Messages can only be viewed by Bob, Bob will only accept messages from 

Alice

Send/Rcv

App

Charlie



© 2014 IBM Corporation

How to secure an existing MQ application – Privacy & Integrity

 When Charlie attempts to put or get a message – 2063 
MQRC_SECURITY_ERROR



Click to add text

© 2014 IBM Corporation

IBM
IBM MQ Security Development

parrobe@uk.ibm.com

Thank you very much.

© 2015 IBM 

Corporation

48

Robert Parker


