

Looking at MQ on z/OS performance from a high level

Dirk Marski, IBM MQ for z/OS Support

Why are you here?

- An "MQ performance problem" is usually a manifestation of a problem occurring elsewhere
- What evidence is there?
- Audience
 - -MQ Administrators, MQ sysprogs, z/OS Sysprogs familiar with
 - MQ
 - Buffer pools
 - Page sets
 - CF
 - Structures
 - SMDS
 - Logs

Notes

- Story about PMR
 - -Response time from 200 ms to 1000 ms
 - -Not CICS, Network so must be MQ
 - -Please fix the problem

Why are you here?

- Do I need to worry about MQ?
- Not meeting Service Level Agreements (SLA)
 - -Response time criteria
 - -Batch job duration or time to empty queue
- You've been told to reduce the z/OS resources
 - -You are the sysprog but it is the applications using CPU!
- Will the work scale in the future?
 - -Consolidation of LPARs and queue managers
- You need evidence for your management that the problem is not MQ

Agenda

- Typical MQ environments
- Who are the people
- What do I need to do now
- What can cause high CPU
- What can cause long response time?
- Use new technology
- Should I tune it
- Will it scale
- Useful commands

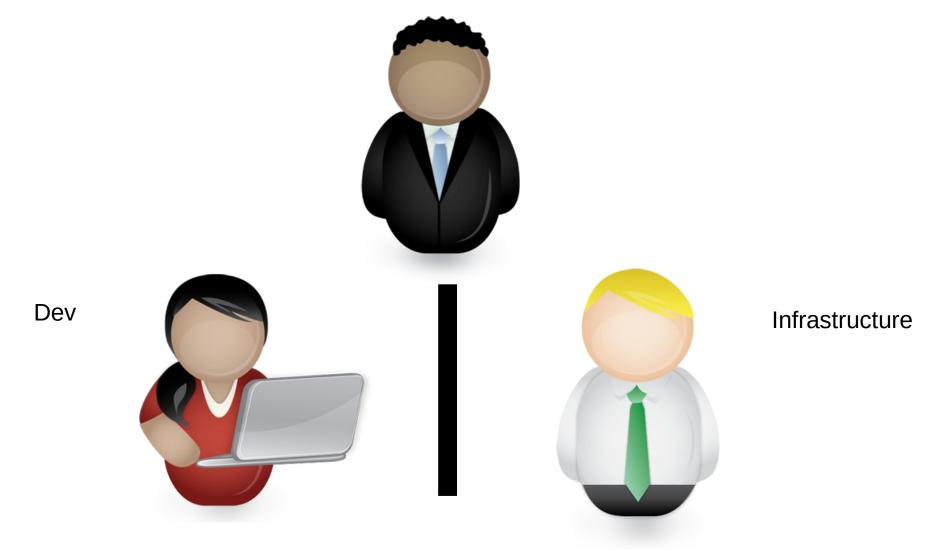
Typical MQ environments

- Online processing
 - -Messages processed within seconds
 - -End to end response time under 1 second
 - -Queues typically have 10's of messages
 - -Performance critical \rightarrow worry about tuning
 - -Work can be queued to balance workload (10s of ms)
- Batch processing
 - -Message last for hours
 - -Deep queues (millions of messages)
 - -Performance is not critical
- Most customers have both! Need to isolate work

What factors are there?

Resources

- -CPU
- -Disk I/O (Response time / Throughput)
- -Storage \rightarrow never allow paging to occur!
- -CF
- -Network
- Usage
 - -Application design
- Metrics
 - -Response time
 - -Cost


Agenda

- Typical MQ environments
- Who are the people
- What do I need to do now
- What can cause high CPU
- What can cause long response time?
- Use new technology
- Should I tune it
- Will it scale
- Useful commands

Who are the people

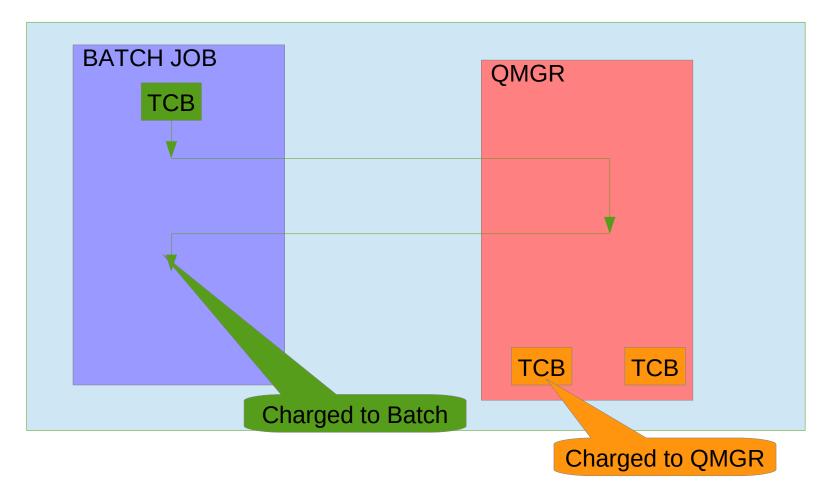
Business/Strategist

Notes

- I0 years ago infrastructure in charge would not let application into production unless had capacity planning one
- Now with agile want application written this week in production next week
 - -No idea of message size, or throughtput
 - -Hard to plan for this
- Application developers in charge
- Any application bugs hard to fix
 - -All Cobol programmers have left
 - -New applications written in Java for mobile phone!

What do I need to do now

- Need to be able to compare a good day with a bad day
- Capture data about the system.
 - -Typical queue depths at peak time
 - -How long messages were on xmit queue
 - -Buffer pool usage
 - -z/OS view of MQ
 - -CF usage
 - Which LPARs were using the structures and response times
- Has the problem just started or happened over time?
- Has anything changed in the environment?
- Practice collecting the data


-Everything will be in place and tested in case of a problem

Agenda

- Typical MQ environments
- Who are the people
- What do I need to do now
- What can cause high CPU
- What can cause long response time?
- Use new technology
- Should I tune it
- Will it scale
- Useful commands

Where is the CPU used?

How do I know if I have high CPU?

- MVS Reports CPU used by Jobs
- CICS/IMS statistics
 - -Reports CPU used by transaction
- MQ accounting class
- Programs like Strobe(R) and Application Performance Analyser
 - -Both of these sample the address space
 - Report which areas of code are hot
 - Reports DB2 and MQ usage

Notes

- Strobe / Application Performance Analyser are near real time.
- Application Performance Analyser has little value for the QMGR (or subsystems) as it works best for applications (jobs)

What can cause high CPU

- Queues not indexed
 - -Many messages scanned
 - -Msgid/Correlid not cleared so getting the wrong message
 - -CSQI004I MQ7A CSQIMGE3 Consider indexing CP0000 by MSGID for BATCH connection PAICEP7A, 36345 messages skipped
- Too many servers
- Still using DB2 blobs
- Dont understand getwait MQGET returns when message arrives or times out

Application design problems

- Trigger every with medium to high throughput
 - -Additional messages produced, cost of starting and ending transaction
 - -Long running transaction is better in most cases
 - -May need logic to monitor and start more instances
- Multiple hops eg broker
 - -Many stages putting to MQ and getting from MQ
 - -Convert 'tree' to XML. MQPUT, MQCOMMIT, MQGET, XML \rightarrow Tree
- Use of dynamic shared queue

-Often better to have a common reply-to queue

High CPU – Application coding

- Not clearing msgid/correlid
 - -Search of queue
 - -Gets worse with increased depth
- Customer with 12 broker msg flows. Reduced them to 1 flow doing all steps. CPU reduced by 50%, transaction speed improved x10

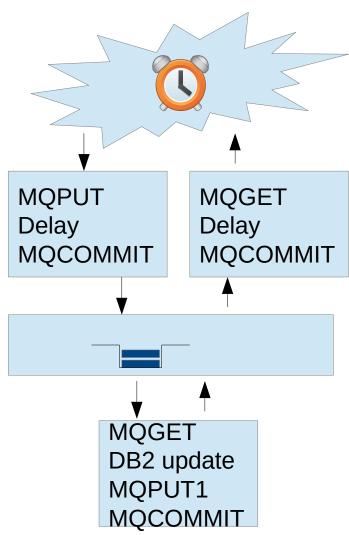
Polling the queue

- -Use get wait with long interval
- -Some people wrongly code 0.1 second and loop around
- -Opportunity to use get signal to post an ECB

What can cause for high CPU in the chinit.

- Clients doing connect, one get/put, disconnect
 - Connect/Disconnect is expensive
 - Consider front end concentrator
 - Can you use connection pooling?
 - Data conversion? → Move to remote queue manager?
- Channel batch size too small
 - Use batch size > 50 and > default batchlim
- Some TLS ciphers are more expensive
- V8 Suppress message channel start/stop
- Client should use listener with INDISP QMGR instead of GROUP
 - -Eliminate DB2 requests
- What are Channel exits doing?
 - -Use DIS CHS EXITTIME

Notes


- Customers think batch size 1 speeds things up
- TLS cipher see MP16
- Cheaper not to produce the channel start/stop (V8) rather than produce and throw away (V7)
- Note that for client connections, in order to use extended transactional client, the server needs to be V701 or higher.

Agenda

- Typical MQ environments
- Who are the people
- What do I need to do now
- What can cause high CPU
- What can cause long response time?
- Use new technology
- Should I tune it
- Will it scale
- Useful commands

Where is time spent?

- Delay before/after MQ
- Messages queued up
 - -Server applications not processing

them

- Is application dispatched?
- Delays due to database?
- MQPUT+MQGET longer
- MQCommit taking longer
 - -2 Phase
 - –Disk I/O
- Channel is an application
 - -And has network time

Where do you start?

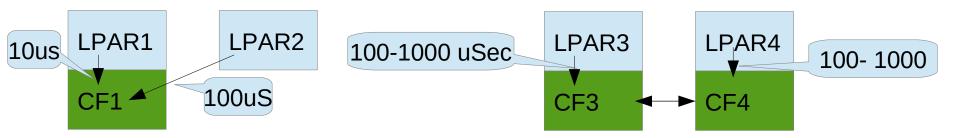
- If applications or MQ short of CPU (big problem)
 - -Fix this before doing anything else Talk to z/OS sysprog
- What can increase time of MQPUTs and MQGETS
 - -Use MQ accounting class(3)
 - -Check Buffer Pools and CF
- What can cause increase in MQCOMMIT
 - -Use MQ accounting class(3)
 - -Use RMF to look at log response time.
- Network problems (big problem)

Workload isolation

- Check 'batch' workload is isolated from 'online' workload
 - -Different page set
 - -Different structures
 - Different CF?
 - -Different buffer pools
 - -Different channels
- Consider a dedicated QMGR for large messages
- You need to know the MQ Objects used by each application type

Deep server queue: What can delay the (server) application

- Is z/OS ok? \rightarrow Ask sysprog; short on CPU, paging , WLM
- Are there enough application instances?
 - -Is this just a peak workload?
- Is the problem in CICS/WAS/IMS? Check statistics
 - -Transactions slow to run
 - -Is the application busy?
 - Doing database updates?
 - -CICS/IMS limiting number of instances
 - So only 2 transaction instances of "PAYROLL" can run at a time
- Trigger every slow to start



What can make MQPUT and MQGET take longer?

- These are normally small impacts
- High cost MQGETs
- Bigger messages? Has the application changed?
- Using DB2 blobs? (Use DB2 monitors)
- Using SMDS instead of CF. MQ Display command
- Now doing page set I/O MQ Display usage command
 - –Buffer pool > 85% full starts moving pages to disk
 - -Buffer pool > 95% full every page does disk I/O
 - -Buffer pool with mixed message types
 - Isolate key business transactions
- Do you need to use persistent messages?

MQ on z/OS performance

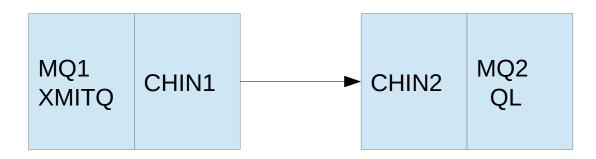
What can make MQPUT and MQGET take longer – CF?

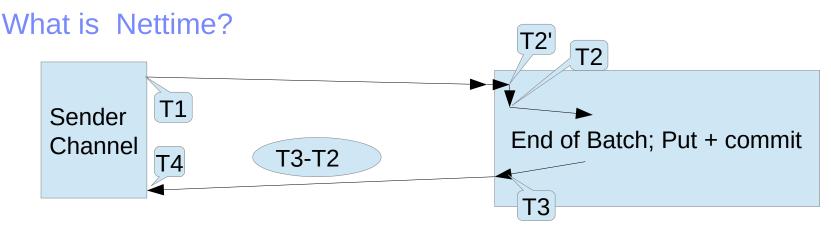
- Impact usually small
- Use RMF
- Response time depends on location and duplex (10 to 1000 uSecs)
- Message arrives on CF1. LPAR1 likely to get message
 - -Overload LPAR1? OTMA
- Response time depends on load on CF
 - -CF CPU < 50% busy
 - -CF Channels
- ²⁷ Other structures can impact MQ eg CICS and DB2

What can make commits take longer

- This is normally small impact
- MQ is busier every week
- Longer I/O request (1ms to 5 ms) use RMF or MQ stats
 - -Due to increased load
 - -Due to slower DASD
 - -Mirrored DASD
- 2 Phase commit
 - -delays in DB2 commit processing
- CF requests may take longer

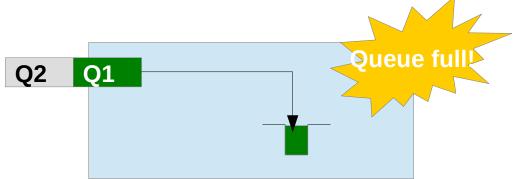
Notes


- Typical log I/O under 1-2 ms
- Mirrored DASD takes longer has to go to remote site
 - -The further the longer it takes!
- 2 phase is 3 log forces
 - -So adding an MQPUT into the transaction makes longer transaction
 - -Eg was 5ms to DB2 before (with mirrored DASD) now 10 = 5ms from DB2 + 2 from MQ


What can delay a channel?

- Network can have major impact
 - -Use TCPIP Ping and netstat (see later)
 - -TCP packet trace
 - -MQ Display commands
- Put retry
 - -Queue full at the remote end retry after a period messages queued
- Interference
 - -Same channel used for different applications
 - -Application 1 has more traffic , impacts application 2
 - -Application 1 get queue full message for application 2 delayed.

Check the channel


- MQPA dis chs(...)xqtime nettime msgs xbatchsz
 - -MSGS(2000)
 - So you can calculate message rate
 - Issue DIS CHS wait.. DIS CHS
 - -XQTIME(65,53) uSeconds \rightarrow high investigate?
 - How long was the message on the XMITQ for ? < 100 is good
 - -XBATCHSZ(1,1)
 - · low means channel was waiting for messages to send
 - If XBATCHSZ = BATCHSIZE always messages to send. Problem ?
 - -NETTIME(422,399) uSeconds \rightarrow if high then investigate?
 - Might be a network, channel or remote end issue

- Time T1 and T3 are taken immediately before send()
- Time T2 and T4 are taken immediately after receive()
- Time T2' is when the TCP/IP buffer holds the data
- T2' T2 is the time between data arriving and the channel being ready to receive it
 - -busy/blocked channel means long delay
 - -Network may be ok for high NETTIME
- NETTIME short. Network is OK and no delays (T2'-T2 small)

What is Nettime? - Queue retry

- The green queue has filled up
 - -Put to the queue waits for period
 - MRRTY(10) this many times
 - MRTMR(1000) this many milliseconds between retries
- Q2 delayed!

Agenda

- Typical MQ environments
- Who are the people
- What do I need to do now
- What can cause high CPU
- What can cause long response time?
- Use new technology
- Should I tune it
- Will it scale
- Useful commands

Technology answers to old applications

- Often applications owners do not want to change applications
 - -Want technology solution
 - -V8 64 bit buffer pools
 - -Bigger page sets
- Increased workload \rightarrow running out of log space
 - -add more logs or make them bigger
- Is changing the hardware better than you spending 1 week on it?
 - -Application tuning
 - -Encryption hardware
 - -Stripe data sets
- 1990's applications filling up buffer pools?
- 35 –Go to V8 and use very large buffer pools (and real storage)

Notes

- 1990's applications filling up buffer pools?
 - –When queues had 10 messages
 - -Now queues have 1 Million messages
 - -They have no COBOL programmers
 - -Go to V8 and use very large buffer pools (and real storage)

How much effort should I spend?

- High activity business critical
- Low activity low importance
- Understand the business applications
 - -Impact on the business
 - -What business applications are important to the business high focus from management
 - -Response time critical?
- Is good enough, good enough?
 - -If it is good enough today, and good enough for tomorrow
- How much of transaction is MQ 2% of cost or 90% of cost?

Should I tune it? Manage the risks

- Tuning is not always beneficial
 - -Merge two channels to save CPU
 - -Causing longer response times
 - -Combination of very big messages and short message
 - -Availability
- You may accept higher costs for improved availability
 - -Shared queue, multiple LPARs

Your mileage may vary

- Different implementations have different characteristics
 - -Same application in concept, different implementation, DB2 etc, message size
 - -Resources available storage for buffer pools
 - -Some customers have spare capacity some have none
 - -Response time from DASD and CF
 - -Throughput rates
- General tuning common to all customers
 - -Customer specific tuning
- Some test at max volume + 25%, some 'Implement and pray'

Agenda

- Typical MQ environments
- Who are the people
- What do I need to do now
- What can cause high CPU
- What can cause long response time?
- Use new technology
- Should I tune it
- Will it scale
- Useful commands

Will it scale?

- Combining queue managers
- Scenario 1
 - -High throughput, messages short lived
- Scenario 2
 - -Up to 1 Million messages on a queue

Will it scale? High throughput – short lived messages (1)

- Two queue managers
 - -Logging 60 MB/Second
 - -Max depth on queue 10
 - -Buffer pool max 2% full
 - -5 channels XBATCHSZ 35

- Merged
 - -Check log stats
 - 120 MB/Second
 - Logs fill more often
 - More checkpoints/hour
 - -Assume same servers
 - -Max depth stay low
 - -Buffer pool 2% full
 - More pageset set I/O due to checkpoint frequencey
 - -Increase channel batch size?
 - -Use 10 channels?
 - -Increased storage usage
 - More connections

Will it scale? High throughput – short lived messages(2)

- Two queue managers
 - -CF
 - -One path to CF from each

LPAR

- Merged
 - -Same sized CF
 - -Same CPU used
 - -One path to CF
 - Higher Utilisation
 - -May offload to SMDS

-CPU impact - more work

Will it scale? Deep queues

- Two queue managers
 - -Logging 60 MB/Second
 - -Max depth on queue 1 Million
 - -Buffer pool max 95% full

Merged

- -Check log stats
 - 120 MB/Second
 - Logs fill more often
 - More checkpoints/hour
- -Expect 2 million messages
 - Bigger page sets?
 - More data, more checkpoints, more I/O
 - Extended format?
 - Stripe page sets
 - Need to measure the time to drain queues
 - Use multiple page sets and 2 Buffer pools
- Need to test

Agenda

- Typical MQ environments
- Who are the people
- What do I need to do now
- What can cause high CPU
- What can cause long response time?
- Use new technology
- Should I tune it
- Will it scale
- Useful commands

Where do I start to look?

- Where do I start to look?
 - -SMF data see deep dive
 - -DB2 monitors for BLOB activity
- Use online z/OS tools like RMFWDM
 - -Reports every minute
 - -Shows you delays due to CPU, DASD, CF
- Offline tools like RMF
 - -Period 30 minutes may not show spikes
- MQ monitoring eg Tivoli
- SupportPac MP1B free!
 - -MQCMD issues display command and stores output in csv file

What's happening to my queue?

- DIS Q(xx) curdepth
 - -Tells you depth now
- RESET QSTATS(SERVER)
 - RESETINT(14)
 - HIQDEPTH(6)
 - MSGSIN(3482)
 - MSGSOUT(3482)
 - -Processing rate 3482/14 = 249 messages a second
- Performance events
- Use monitoring product or MQCMD in SupportPac MP1B
 - -Issues command periodically and stores output in CSV file

What's happening to my Channel?

- Use Display Chstatus
 - -MSGS(2000)
 - So you can calculate message rate
 - $-XQTIME(65,53) \rightarrow high investigate?$
 - How long was the message on the XMITQ for ?
 - $-XBATCHSZ(1,1) \rightarrow$ low means channel was waiting for messages to

send

- -NETTIME(422,399) \rightarrow high investigate?
- Use SMF (V8)

What's happening to my Channel?

Ping

- //RUN1GB EXEC PGM=IKJEFT01,REGION=0M
- //SYSTSPRT DD SYSOUT=*
- //SYSTSIN DD *
- ping winmvsac (count 1000 verbose length 32768
- /*
- -Ping statistics for winlnxn7.hursley.ibm.com (9.20.4.136)
 - Packets: Sent=1000, Received=1000, Lost=0 (0% loss)
 - Approximate round trip times in milliseconds:
 - Minimum=1.03 ms, Maximum=10.19 ms, Average=1.13 ms, StdDev=0.50 ms
- -Seen customers with over 80 milliseconds across pacific.
- -Where is the remote box?
- -Measure your round trip time

What's happening to my Buffer pool

- DIS USAGE
 - -Tells you now
 - -CSQI065I MQPC Buffer pool attributes ... 359
 - Buffer Available Stealable Stealable Page Location
 - pool buffers buffers percentage class

•	0	10000	9981	99 4KB	BELOW
•	1	10000	9979	99 4KB	BELOW
•	2	10000	9999	99 4KB	BELOW
•	3	10000	9994	99 4KB	BELOW
• _	4	50000	49962	99 4KB	BELOW

- 99% free !

What is my logging rate?

- Log message
 - -CSQJ002I MQPD END OF ACTIVE LOG DATA SET DSNAME=... STARTRBA=0000000E72A1E000 ENDRBA=0000000F32B9DFFF
 - -0F32B9DFFF-0E72A1E000 = 3074MB
 - -Every 2 minutes
 - -Logging rate = 25 MB/Second
- Monitor how often your logs fill up!
- Edit joblog x all;f CSQJ002I all; del all x;look at timestamps

Summary of what to collect

- Look at queue depths for application queues
 - -Large depths \rightarrow problem else where
- Check Buffer pool < 85%</p>
- Check CF response time
 - -And other CF information
- Check Response time of the MQ Logs
- Check DIS CHS
 - -XBATCH < BATCHSZ
 - -XQTIME
 - -NETTIME

TCP PING

Summary

An "MQ performance problem" is usually a manifestation of a problem occurring elsewhere

Thank you