
What's new in IBM MQ V8

Morag 
Hughson -

hughson@uk.ibm.com

IBM UK

24/06/2014

N

O

T

E

S

What's new in IBM MQ V8

� IBM announced MQ V8 on 22 April 2014 and it was generally available in 
the months that followed.

� This presentation is Part 1 of a two-part presentation all about the new 
features in IBM MQ V8.

� Part 1 (This part) covers the “Platforms & Standards”, “Security” and 
“Scalability” columns from the table on the next page.

� Part 2 (afternoon session) covers the “System z exploitation” columns from 
the table on the next page.



24/06/2014

MQ V8 Dates / End of Service

• Announce: 22 April 2014
• Availability:

– 23 May 2014 (eGA Distributed)
– 13 June 2014 (z/OS and pGA Distributed)

• End of Service for old platforms and versions
– MQ V7.0.0 and V7.0.1 for multiplatforms – EOM, EOS effective 

September 2015
• V7.0 will have had more than 7 years of support 

– MQ V7.0.1 for z/OS – EOM, EOS effective September 2015
• V7.0 .0 already out of service

24/06/2014

IBM MQ V8 delivering best in class 
enterprise messaging

Platforms & 
Standards

Security Scalability System z exploitation

64-bit for all platforms
Userid authentication 
via OS & LDAP

Multiplexed client 
performance

64-bit buffer pools in MQ for 
z/OS means less paging, more 
performance

Support for JMS 2.0
User-based 
authorisation for Unix

Queue manager 
vertical scaling

Performance and capacity

Improved support for 
.Net and WCF

AMS for IBM i & z/OS
Publish/Subscribe 
improvements

Performance enhancements for 
IBM Information Replicator 
(QRep)

Changes to runmqsc
DNS Hostnames in 
CHLAUTH records

Routed 
publish/subscribe

Exploit zEDC compression 
accelerator

SHA-2 for z, i & NSS
Multiple certificates 
per queue manager

Multiple Cluster 
Transmit Queue on all 
platforms

SMF and shared queue 
enhancements



24/06/2014

IBM MQ V8 delivering best in class 
enterprise messaging

Platforms & 
Standards

Security Scalability System z exploitation

64-bit for all platforms
Userid authentication 
via OS & LDAP

Multiplexed client 
performance

64-bit buffer pools in MQ for 
z/OS means less paging, more 
performance

Support for JMS 2.0
User-based 
authorisation for Unix

Queue manager 
vertical scaling

Performance and capacity

Improved support for 
.Net and WCF

AMS for IBM i & z/OS
Publish/Subscribe 
improvements

Performance enhancements for 
IBM Information Replicator 
(QRep)

Changes to runmqsc
DNS Hostnames in 
CHLAUTH records

Routed 
publish/subscribe

Exploit zEDC compression 
accelerator

SHA-2 for z, i & NSS
Multiple certificates 
per queue manager

Multiple Cluster 
Transmit Queue on all 
platforms

SMF and shared queue 
enhancements



24/06/2014

MQ platform consistency

• 64-bit server support for all queue manager platfor ms
– Completion of platform coverage by adding Windows 64-bit engine
– Applications can still be 32-bit
– Requires Windows 7 or later
– Client only package for 32-bit platforms
– Queue Manager requires 64-bit

24/06/2014

N

O

T

E

S

MQ platform consistency

� This release has all the Distributed queue managers fully supporting 64-bit 
operations. The final remaining platform had been Windows, but now the 
queue manager runs as 64-bit processes. Existing 32-bit applications 
continue to work of course, but this should bring additional capacity and 
scalability to the queue managers on that OS. The lowest level of Windows 
now supported is Windows 7; older versions are not supported. A client-
only package for 32-bit versions of Windows is provided, but the qmgr
requires the 64-bit OS.



24/06/2014

JMS 2.0

• Long-awaited update from JMS 1.1 standard

• JMS 2.0 – JSR 343 Java Message Service (JMS 2.0) 
– Final release on 21 May 2013. 
– https://java.net/projects/jms-spec/pages/JMS20FinalRelease

• New Messaging Features
– Delivery Delay
– Asynchronous Send
– Subscriptions can be shared across a messaging provider

• API Changes
– Use of java.lang.AutoCloseable
– Simplified API  [combined connection/session]
– Session doesn't need parameters (for Java EE)

• Java 7 prereq
• Java EE 7 prereq for use of the Resource Adapter in Application Servers

– See statement of support here: 
http://www.ibm.com/support/docview.wss?uid=swg27041968

• Full presentation can be seen here:
– http://www.slideshare.net/calanais/ibm-mq-v8-and-jms-20

24/06/2014

N

O

T

E

S

JMS 2.0

� The JMS 2.0 specification now requires JMS providers to implement both P2P and Pub-Sub. 

� The following new messaging features have been added in JMS 2.0:
– Delivery delay: a message producer can now specify that a message must not be delivered until after a specified time interval. 

– New send methods have been added to allow an application to send messages asynchronously. 

– JMS providers must now set the JMSXDeliveryCount message property. 

� The following change has been made to aid scalability: 
– Applications are now permitted to create multiple consumers on the same durable or non-durable topic subscription. In previous versions of JMS 

only a single consumer was permitted. 

� Several changes have been made to the JMS API to make it simpler and easier to use: 
– Connection, Session and other objects with a close method now implement the java.jang.AutoCloseable interface to allow them to be used in a 

Java SE 7 try-with-resources statement. 

– A new "simplified API" has been added which offers a simpler alternative to the standard API, especially in Java EE applications. 

– New methods have been added to create a session without the need to supply redundant arguments. 

– Although setting client ID remains mandatory when creating an unshared durable subscription, it is optional when creating a shared durable 
subscription. 

– A new method getBody has been added to allow an application to extract the body directly from a Message without the need to cast it first to an 
appropriate subtype. 

� New methods have been added to Session which return a MessageConsumer on a durable topic subscription. 
Applications could previously only obtain a domain-specific TopicSubscriber, even though its use was 
discouraged. 

� The specification has been clarified in various places. 

� JMS 2.0 implementations require Java 7 for the runtime. They also require Java EE 7 for use of the Resource 
Adapter in Application Servers.  Not all App Servers currently support  Java EE 7. However, as with all client 
implementations, older versions of the RA still work when communicating to an MQ V8 queue manager.



24/06/2014

.Net  enhancements

• MQ .Net classes can now use SSL without needing the  C 
client installed
– A secure fully-managed .Net implementation
– Uses Windows native certificate stores

• For MQ .NET classes (aka Base .NET Classes) SSL 
properties can be set at 
– MQEnvironment.cs
– Hashtable properties (input parameter to MQQueueManager

constructor)
• For XMS .NET, SSL properties can be set as 

ConnectionFactory properties

• WCF interface extended to non-SOAP, non-JMS message s
– Making it easier for apps using WCF to communicate with any other 

MQ application

24/06/2014

N

O

T

E

S

.Net  enhancements: SSL + WCF

� MQ .NET in unmanaged mode has supported the use of SSL 
since MQ v6.0.1. It was based on the C Client (and GSKit).

� In V8 MQ .NET Managed mode now supports SSL based on 
Microsoft SSLStreams/Security kit.

� There are some limitations when using SSL with Managed 
.NET.

� CipherSpec setting can be made only at Windows Group policy 
(gpedit.msc).

– CipherSpec set on client channel is used only to determine 
SSLProtocol. 

– Make sure you set same cipherspec on Windows group policy and client 
channel to make sure correct protocol version is flowed.

� KeyRepository uses Windows Key Store only. 
– Set value as *SYSTEM for accessing certificates under Computer 

Account

– Set value as *USER for accessing certificates under User account

� FIPS can be enabled only from Windows group policy.

� KEYRESET is not supported by Microsoft SSLStreams
– This limitation is overridden by using KEYRESETCOUNT and Client 

Auto Reconnect feature of MQ.

– Application can set KEYRESETCOUNT during connection, once the 
number of bytes sent/received reaches the count, connection will be 
forcibly broken. If Client Auto Reconnect facility is enabled, connection 
will be automatically reconnected.

� No managed way to support Cryptographic hardware

� Product samples have been updated to demonstrate SSL 
Connections. These can be found in 
WebSphere MQ\tools\dotnet\samples\cs\base\Simple

� Additional model for sending MQ messages 
from WCF applications

– Both SOAP/JMS and MQMessaging can be used

� SOAP/JMS
– Supported since MQ v7.0.1

– Based on XMS .NET and makes JMS-like calls for MQI

– Uses JMS nomenclature for URI(jms:\\) and Bindings

– Now also supports “wmq:\\” style of URI

– Uses MA93 supportpac specification for URI 
format/syntax

– Messages can be delivered only to SOAP enabled 
Client/Service

� MQMessaging
– New in MQ V8.0

– Transmits MQ Messages over the WCF Channel without 
any SOAP headers

– Use “wmq:\\” style of URI

– Uses MA93 supportpac specification for URI 
format/syntax

– Messages can be delivered to SOAP or NON-SOAP MQ 
applications



24/06/2014

Changes to runmqsc

• Can now be run by any user (not just mqm group)
– Can take a userid/password for authentication: new "-u" flag

• Can now connect as a client to remote systems: new " -c" flag
– Client channel definitions located by MQSERVER -> MQCHLLIB -> 

MQCHLTAB

• Can act as standalone program to create local CCDT: new "-n" flag
– Does not connect to queue manager; commands subset to update local 

channel definition file
• Ease of use

– Customisable prompt
using environment
variable

– New "exit" and "quit“
synonyms for "end"

$ ls –l runmqsc
-r-xr-xr-x    1 mqm    mqm   25930 06 Mar 04:46 run mqsc

$ export MQPROMPT="MQ +MQ_INSTALLATION_NAME+> "
$ runmqsc –u metaylor QM1
5724-H72 (C) Copyright IBM Corp. 1994, 2014.
Enter password:
******
Starting MQSC for queue manager QM1.

MQ Installation5> DIS QMGR
…

24/06/2014

N

O

T

E

S

Changes to runmqsc

� This release introduces a number of changes to the runmqsc program

� Firstly, it is now exectuable by any user, not just members of the mqm group. Security controls 
still apply of course, but the security is checked on each individual command. This makes it 
easier to have MQ administrators who have been granted full access to objects, but who are not 
in the mqm group.

� Another reason for making runmqsc world-executable was to make it usable on machines which 
do not have queue managers installed. It is now installed even on client-only systems, and it can 
be run either as a client program connecting directly to a remote queue manager, or as a 
completely standalone program to permit local creation of the Client Channel Definition Table. So 
you can create and modify a CCDT with no queue manager access at all.

� The program is one of several that have been updated to accept a userid for authentication. If 
the –u flag is given, then a password is requested. Note that the password is read from stdin so 
that it can be redirected from a file if necessary. If you also use scripts piped into runmqsc, then 
you can group commands  to avoid having to put the password in the same script as the MQSC 
commands.

– Unix:    (cat password.stash ; cat script.mqsc)  | runmqsc –u userid QM1

– Windows: (type password.stash & type script.mqsc) | runmqsc –u userid QM1

� There are  also a couple of usability enhancements. Firstly, there are some synomyms added to 
complete an MQSC session – END, QUIT and EXIT can all be used so you don't have to try 
them all. Different scripting environments for different products typically use one of these 
commands, and it's annoying to have to remember which goes with which. 

� Secondly, you can now make it easier to see that you are in an MQSC command environment 
and some details of the current environment  by setting the MQPROMPT environment variable. 
Replaceable inserts are recognised such as date and time, and installation-specific details. 
These are the same variable subsitutions as available for SERVICE objects.



24/06/2014

SHA-2 Support

• Stronger algorithms are now available and recommend ed
– In many cases available pre-V8
– See technote

http://www.ibm.com/support/docview.wss?uid=swg21639606

• Changes also rolled into V8
• CipherSpecs include:-

– ECDHE_RSA_AES_128_CBC_SHA256
– ECDHE_RSA_AES_256_CBC_SHA384
– TLS_RSA_WITH_AES_128_CBC_SHA256
– TLS_RSA_WITH_AES_256_CBC_SHA256
– TLS_RSA_WITH_NULL_SHA256

24/06/2014

N

O

T

E

S

SHA-2 Support

� SHA-2 stands for Secure Hash Algorithm 2. This is the generic name for a 
family of hash functions SHA-224, SHA-256, SHA-384, and SHA-512; the 
numbers refer to the bit-size of the generated hash value.

� The hashing algorithms historically supported by WebSphere MQ channel 
cipherSpecs (SSLCIPH) were MD5 and SHA-1. These are no longer 
regarded as adequately secure due to successful attacks on them which 
have been widely publicized, and because NIST (the American National 
Institute of Standards and Technology) has mandated 
(http://csrc.nist.gov/groups/ST/hash/policy.html) that both MD5 and SHA-1 
no longer be used. So we have had considerable customer pressure for 
provision of “SHA-2 support.”

� This support is in MQ V8, but also in earlier releases by applying 
appropriate fix pacs for the platform or component on MQ where you are 
interested in using it. A technote at 
http://www.ibm.com/support/docview.wss?uid=swg21639606 details 
exactly which fix pacs or APARs are required in each case.



24/06/2014

IBM MQ V8 delivering best in class 
enterprise messaging

Platforms & 
Standards

Security Scalability System z exploitation

64-bit for all platforms
Userid authentication 
via OS & LDAP

Multiplexed client 
performance

64-bit buffer pools in MQ for 
z/OS means less paging, more 
performance

Support for JMS 2.0
User-based 
authorisation for Unix

Queue manager 
vertical scaling

Performance and capacity

Improved support for 
.Net and WCF

AMS for IBM i & z/OS
Publish/Subscribe 
improvements

Performance enhancements for 
IBM Information Replicator 
(QRep)

Changes to runmqsc
DNS Hostnames in 
CHLAUTH records

Routed 
publish/subscribe

Exploit zEDC compression 
accelerator

SHA-2 for z, i & NSS
Multiple certificates 
per queue manager

Multiple Cluster 
Transmit Queue on all 
platforms

SMF and shared queue 
enhancements



24/06/2014

Connection Authentication – Application 
changes

• Code changes
– Procedural – MQCSP on MQCONNX
– OO classes – MQEnvironment
– JMS/XMS – createConnection
– XAOpen string

• Alternatively Exits can provide MQCSP
– Client side security exit

• Provided
– Client side Pre-conn exit

MQCONNX
User3 + pwd3

Application (User4)

MQCONNX
User1 + pwd1

Application (User2) QMgr

Network

Com
m

unications

Inter process 
Communications

24/06/2014

N

O

T

E

S

Connection Authentication – Application 
changes – Notes

� Since WebSphere MQ V6.0, an application has been able to provide a user ID and password (in the Connection 
Security Parameters (MQCSP) structure in the MQCNO) at MQCONNX time. These were passed to a user 
written plug-point in the OAM on distributed to be checked. If the application was running client bound, this user 
ID and password were also passed to the client side and server side security exits for processing and can be 
used for setting the MCAUser attribute of a channel instance. The security exit is called with ExitReason
MQXR_SEC_PARMS for this processing.

� This pre-existing feature of the MQI is being used to provide the user ID and password to the queue manager for 
checking. Previously a custom Authorization Service was required to check this (or a security exit if the 
applications were connecting as clients), now the Object Authority Manager (OAM) supplied with the queue 
manager and the z/OS Security component within the queue manager will deal with these user IDs and 
passwords. Whether z/OS or distributed, the component that deals with the user IDs and passwords will call out 
to a facility outside of MQ to do the check – more on that later.

� In WebSphere MQ V8 this will be available in all our interfaces listed, even where some of those were not made 
available in the WebSphere MQ V6 timeframe when the programming interface was originally provided.

� In prior releases the MQCSP had no architected limits on the user ID and password strings that were provided by 
the application. When using them with these MQ provided features there are limits which apply to the use of 
these features, but if you are only passing them to your own exits, those limits do not apply.

� The XAOpen string has also been updated to allow the provision of a user ID and password.

� Sometimes of course, it can be hard to get changes into applications, so the user ID and password can be 
provided using an exit instead of changing the code. Client side security exits or the pre-connect exit, can make 
changes to the MQCONN before it is sent to the queue manager, and the security exit in fact is designed to allow 
the setting of the MQCSP since V6 (so clients do not need to be updated to the new version in order to use this).



24/06/2014

Procedural MQI changes

• MQCSP structure
– Connection Security Parameters
– User ID and password

• MQCNO structure
– Connection Options

• WebSphere MQ V6
– Passed to OAM (Dist only) 
– Also passed to Security Exit

• Both z/OS and Distributed
• MQXR_SEC_PARMS

• WebSphere MQ V8
– Acted upon by the queue manager (all 

platforms)

MQCNO cno = {MQCNO_DEFAULT};

cno.Version = MQCNO_VERSION_5;

cno.SecurityParmsPtr = &csp;

MQCONNX(QMName,
&cno ,
&hConn,
&CompCode,
&Reason);

MQCSP csp = {MQCSP_DEFAULT};

csp.AuthenticationType = MQCSP_AUTH_USER_ID_AND_PWD;
csp.CSPUserIdPtr = "hughson";                         
csp.CSPUserIdLength = 7;         /* Max: MQ_CLIENT_U SER_ID_LENGTH */
csp.CSPPasswordPtr = "passw0rd";
csp.CSPPasswordLength = 8;         /* Max: MQ_CSP_PA SSWORD_LENGTH   */

24/06/2014

Object Oriented MQ classes changes

cf = getCF();

System.out.println("Creating the Connection with UI D and Password");
Connection conn = cf.createConnection("hughson", "pa ssw0rd");

JMS/XMS classes changes

MQEnvironment.properties = new Hashtable();
MQEnvironment.userID = "hughson";
MQEnvironment.password ="passw0rd";

System.out.println("Connecting to queue manager");
MQQueueManager qMgr = new MQQueueManager(QMName);



24/06/2014

Assist applications that are unchanged to 
participate in authentication.
Consists of:

• Client channel
security exit to
insert uid/passwd

• Command line tool
to protect passwords
in a config file

Exit: mqccred

Client side Security Exit

MQCONN

Application

Q
M

gr
Q

M
1

Network
Communications

AllQueueManagers:
User=abc
OPW=%^&aervrgtsr

QueueManager:
Name=QM1
User=user1
OPW=H&^dbgfh

AllQueueManagers:
User=abc
password=newpw

QueueManager:
Name=QMA
User=user1
password=passw0rd

Tool: runmqccred

mqccred.ini

mqccred.ini

File
permissions

Exit can be used by 
clients from V7.0.1 
and later (by copying 
from a V8 installation)

24/06/2014

N

O

T

E

S

Client side Security Exit – Notes

� To make changes to applications, especially the very prevalent client attached 
applications where we see the strongest use case for using user ID and password, is 
difficult for customers. To aid with this issue, WebSphere MQ V8 provides a client 
side security exit which can set the user ID and password instead of making 
changes in the application to do this.

� The exit runs at the CLNTCONN end of the channel and pulls the user ID and the 
password from a file. This file is controlled by means of OS file permissions. If the 
exit discovers that the file permissions are too open, it will cause a failure thus 
ensuring that this important part of protecting the passwords does not go unnoticed.

� The file is additionally obfuscated from casual browsers. The algorithm for this 
obfuscation is not published, and neither is the source of the exit.

� The exit will be built in such a way that it can be picked up from a V8 installation and 
copied to a V7.0.1 client installation (or later). Note that using a client installation of < 
V8 will mean you have the password flowed in the clear. Only V8 and later at both 
ends will provide the ability to protect the flowed password without the need to use 
SSL/TLS.

� Along with the exit, we also supply a tool which is used to obfuscate the file 
containing the passwords.



24/06/2014

REQDADM

REQUIRED

OPTIONAL

NONE

CHCK…

Connection Authentication – Configuration

MQCONNX
User3 + pwd3

Application (User4)

MQCONNX
User1 + pwd1

Application (User2) QMgr

Network

Com
m

unications

Inter process 
Communications

ALTER QMGR CONNAUTH(USE.PW)

DEFINE AUTHINFO(USE.PW) 
AUTHTYPE(xxxxxx) FAILDLAY(1) 
CHCKLOCL(OPTIONAL) 
CHCKCLNT(REQUIRED)

REFRESH SECURITY TYPE(CONNAUTH)
MQRC_NOT_AUTHORIZED (2035)

MQRC_NONE (0)

24/06/2014

N

O

T

E

S

Connection Authentication –
Configuration – Notes 

� We’ll start with the basic configuration side of things. How do I turn on this connection 
authentication feature on the queue manager.

� On the queue manager object there is a new attribute called CONNAUTH (short for connection 
authentication) which points to an object name. The object name it refers to is an authentication 
information object – one of two new types. There are two existing types of authentication 
information objects from earlier releases of WebSphere MQ, these original two types cannot be 
used in the CONNAUTH field.

� The two new types are similar in quite a few of the basic attributes so we will look at those first. 
We’ll come back to more of the attributes later. We show here a new authentication information 
object which has two fields to turn on user ID and password checking, CHCKLOCL (Check Local 
connections) and CHCKCLNT (Check Client connections). Changes to the configuration of this 
must be refreshed for the queue manager to pick them up.

� Both of these fields have the same set of attributes, allowing for a strictness of checking. You can 
switch it off entirely with NONE; set it to OPTIONAL to ensure that if a user ID and password are 
provided by an application then they must be a valid pair, but that it is not mandatory to provide 
them – a useful migration setting perhaps; set it to REQUIRED to mandate that all applications 
provide a user ID and password; and, only on Distributed, REQDADM which says that privileged 
users must supply a valid user ID and password, but non-privileged users are treated as per the 
OPTIONAL setting.

� Any application that does not supply a user ID and password when required to, or supplies an 
incorrect combination even when it is optional will be told 2035 (MQRC_NOT_AUTHORIZED). 
N.B. When password checking is turned off using NONE – then invalid passwords will not be 
detected.

� Any failed authentications will be held for the number of seconds in the FAILDLAY attribute 
before the error is returned to the application – just some protection against a busy loop from an 
application repeatedly connecting.



24/06/2014

User's Digital 
Certificate

CA Sig

Connection Authentication – Configuration 
Granularity

MQCONNX
User3 + pwd3

Application (User4)

QMgr

Clear Network

Com
m

unications

DEFINE AUTHINFO(USE.PW) AUTHTYPE(xxxxxx) 
CHCKCLNT(OPTIONAL)

SET CHLAUTH(‘*’) TYPE(ADDRESSMAP) 
ADDRESS(‘*’) USERSRC(CHANNEL) 
CHCKCLNT(REQUIRED)

SET CHLAUTH(‘*’) TYPE(SSLPEERMAP) 
SSLPEER(‘CN=*’) USERSRC(CHANNEL) 
CHCKCLNT(ASQMGR)MQRC_NOT_AUTHORIZED 

(2035)

MQCONNX
User1 + pwd1

Application (User2)

MQRC_NONE (0)

SSL/TLS Network 
Communications

REQDADM

REQUIRED

ASQMGR

CHCKCLNT

24/06/2014

N

O

T

E

S

Connection Authentication –
Configuration Granularity – Notes 

� In addition to the two fields that turn this on overall for client and locally 
bound applications, there are enhancements to the CHLAUTH rules so that 
more specific configuration can be made using CHCKCLNT. You can set 
the overall CHCKCLNT value to OPTIONAL, and then upgrade it to be 
more stringent for certain channels by setting CHCKCLNT to REQUIRED 
or REQDADM on the CHLAUTH rule. By default, CHLAUTH rules will run 
with CHCKCLNT(ASQMGR) so this granularity does not have to be used.



24/06/2014

Connection Authentication – Relationship to 
Authorization

MQCONNX
User3 + pwd3

MQOPEN

Application (User4)

MQCONNX
User1 + pwd1

MQOPEN

Application (User2) QMgr

Network

Com
m

unications

Inter process 
Communications

Authority
Checks

ALTER QMGR CONNAUTH(USE.PWD)

DEFINE AUTHINFO(USE.PWD) AUTHTYPE(xxxxxx) 
CHCKLOCL(OPTIONAL) 
CHCKCLNT(REQUIRED) ADOPTCTX(YES)

Q1: User4 +none

Q1: User3 +get

Q1: User2 +none

Q1: User1 +put

Authority Records

Q1

24/06/2014

N

O

T

E

S

Connection Authentication –
Relationship to Authorization – Notes

� So we have seen that we can configure our queue manager to mandate user IDs and 
passwords are provided by certain applications. We know that the user ID that the 
application is running under may not be the same user ID that was presented by the 
application along with a password. So what is the relationship of these user IDs to the 
ones used for the authorization checks when the application, for example, opens a queue 
for output.

� There are two choices, in fact, controlled by an attribute on the authentication information 
object – ADOPTCTX.

� You can choose to have applications provide a user ID and password for the purposes of 
authenticating them at connection time, but then have them continue to use the user ID 
that they are running under for authorization checks. This may be a useful stepping stone 
when migrating, or even a desirable mode to run in, perhaps with client connections, 
because authorization checks are being done using an assigned MCAUSER based on IP 
address or SSL/TLS certificate information.

� Alternatively, you can choose the applications to have all subsequent authorization checks 
made under the user ID that you authenticated by password by selecting to adopt the 
context as the applications context for the rest of the life of the connection.

� If the user ID presented for authentication by password is the same user ID that the 
application is also running under, then of course this setting has no effect.



24/06/2014

Connection Authentication – User 
Repositories

QMgr

O/S User
Repository
(z/OS + Dist)

Netw
or

k

Com
mun

ica
tio

ns LDAP Server (Dist only)

DEFINE AUTHINFO(USE.OS) AUTHTYPE(IDPWOS) 

DEFINE AUTHINFO(USE.LDAP) 
AUTHTYPE(IDPWLDAP) 
CONNAME(‘ldap1(389),ldap2(389)’) 
LDAPUSER(‘CN=QMGR1’) 
LDAPPWD(‘passw0rd’) SECCOMM(YES)

MQCONNX
User1 + pwd1

Application (User2)

PassPhrases also 
supported on z/OS

24/06/2014

N

O

T

E

S

Connection Authentication – User 
Repositories – Notes

� So far we have spoken about user ID and password authentication without mentioning 
what is actually doing the authentication. We’ve also shown that there is a new type of 
authentication information object without showing you the object type. Here we introduce 
two new object types of authentication information objects.

� The first type is used to indicate that the queue manager is going to use the local O/S to 
authentication the user ID and password. This type is IDPWOS.

� The second type is used to indicate that the queue manager is going to use an LDAP 
server to authenticate the user ID and password. This type is IDPWLDAP and is not 
applicable on z/OS.

� Only one type can be chosen for the queue manager to use by naming the appropriate 
authentication information object in the queue manager’s CONNAUTH attribute.

� We have already covered everything there is to say about the configuration of the O/S as 
the user repository as the common attributes are all there is for the O/S. There is more to 
say about the LDAP server as an option though.

� Some of the LDAP server configuration attributes are probably fairly obvious. The 
CONNAME is how the queue manager knows where the LDAP server is, and SECCOMM 
controls whether connectivity to the LDAP server will be done using SSL/TLS or not. The 
LDAPUSER and LDAPPWD attributes are how the queue manager binds to the LDAP 
server so that it can look-up information about user records. It is likely this may be a public 
area of an LDAP server, so these attributes may not be needed.

� It is worth highlighting that the CONNAME field can be used to provide additional 
addresses to connect to for the LDAP server in a comma-separated list. This can aid with 
redundancy if the LDAP server does not provide such itself.



24/06/2014

Secure connection to an LDAP Server

QM's Digital 
Certificate

CA Sig SSLKEYR

LDAP Server

ALTER QMGR CONNAUTH(USE.LDAP)
SSLFIPS(NO) SUITEB(NONE) 
CERTLABL(‘ibmwebspheremqqm1’) 
SSLKEYR('var/mqm/qmgrs/QM1/ssl/key') 

DEFINE AUTHINFO(USE.LDAP)
AUTHTYPE(IDPWLDAP)
SECCOMM(YES) 
CONNAME(‘ldapserver(389)’)

Netw
or

k

Com
mun

ica
tio

ns

DISPLAY QMSTATUS 
LDAPCONN

24/06/2014

N

O

T

E

S

Secure connection to an LDAP Server –
Notes

� Unlike on channels, there is no SSLCIPH parameter to turn on the use of SSL/TLS for the 
communication with the LDAP server. In this case MQ is acting as a client to the LDAP 
server so much of the configuration will be done at the LDAP server. Some existing 
parameters in MQ will be used to configure how that connection will work as shown on this 
slide.

� The overall switch to choose SSL/TLS communication or not, we already saw on the 
previous page – SECCOMM.

� In addition to this attribute, we will also pay attention to the queue manager attributes 
SSLFIPS and SUITEB to restrict the set of cipher specs that will be chosen. The certificate 
that will be used to identify the queue manager to the LDAP server will be the queue 
manager certificate, either ‘ibmwebspheremq<qmgr-name>’ or the newly added 
CERTLABL attribute which we’ll talked about in an earlier section of this presentation.

� Certificate revocation will be checked by using the OCSP servers that are named in the 
AuthorityInfoAccess (AIA) certificate extensions. This can be turned off by using the qm.ini
SSL stanza attribute OCSPCheckExtensions.

� Connection to an LDAP Server is made as a network connection (which is why you may 
wish to consider using a secure connection). The status of this connection from the queue 
manager to the LDAP server is shown in DISPLAY QMSTATUS.



24/06/2014

objectClass=organizationUnit

objectClass=inetOrgPerson

objectClass=organization

objectClass=country

LDAP User Repository

LDAP Server

c=UK

DEFINE AUTHINFO(USE.LDAP) 
AUTHTYPE(IDPWLDAP) 
CONNAME(‘ldapserver(389)’)

o=ibm

cn=useradm cn=jbloggs

MQCONNX
User + pwd

Application

cn=useradm,ou=users,o=ibm,c=uk

Application provides

BASEDNU(‘ou=users,o=ibm,c=uk’)
USRFIELD(‘cn’) 

ou=users

CLASSUSR(‘inetOrgPerson’)

Adds ou=users,o=ibm,c=ukcn=useradm

cn=useradm,ou=users,o=ibm,c=uk

BASEDNApplication provides

Adds ou=users,o=ibm,c=ukAdds cn=useradm

USRFIELD BASEDNUApplication provides

24/06/2014

N

O

T

E

S

LDAP User Repository – Notes

� When using an LDAP user repository there is some more configuration to be done on the 
queue manager other than just to tell the queue manager where the LDAP repository 
resides.

� User IDs records defined in an LDAP server have a hierarchical structure in order to 
uniquely identify them. So an application could connect to the queue manager and present 
its user ID as being the fully qualified hierarchical user ID. This however is a lot to provide 
and it would be simpler if we could configure the queue manager to say, assume all user 
IDs that are presented are found in this area of the LDAP server and add that qualification 
onto anything you see. This is what the BASEDNU attribute is for. It identifies the area in 
the LDAP hierarchy that all the user IDs are to be found. Or to look at it another way, the 
queue manager will add the BASEDNU value to the user ID presented by an application to 
fully qualify it before looking it up in the LDAP server.

� Additionally, your application may only want to present the user ID without providing the 
LDAP attribute name, e.g. CN=. This is what the USRFIELD is for. Any user ID presented 
to a queue manager without an equals sign (=) will have the attribute and the equals sign 
pre-pended to it, and the BASEDNU value post-pended to it before looking it up in the 
LDAP server. This may be a useful migratory aid when moving from O/S user IDs to LDAP 
user IDs as the application could very well be presenting the same string in both cases, 
thus avoiding any change to the application.



24/06/2014

Connection Authentication – Summary

• Application provides User ID and password in MQCSP
– Or uses mqccred exit supplied

• Queue Manager checks password against OS or LDAP
– ALTER QMGR CONNAUTH(CHECK.PWD)

– DEFINE AUTHINFO(CHECK.PWD)
AUTHTYPE(IDPWOS|IDPWLDAP)
CHCKLOCL(NONE|OPTIONAL|REQUIRED|REQDADM)
CHCKCLNT(NONE|OPTIONAL|REQUIRED|REQDADM)
ADOPTCTX(YES)

+ various LDAP attributes
– REFRESH SECURITY TYPE(CONNAUTH)

• Password protection is provided when SSL/TLS not in  use
– Both ends of client channel are V8 or above



24/06/2014

MQ Security - Authorisation

• Make Unix OAM userid-based
– Optional configuration

– Consistent with other platforms

– Will no longer add primary group
to authorities during setmqaut

– Chosen at queue manager
creation or by editing qm.ini

• Default is still group-based authorisations

• Delete Authority record by SID
– Solve problem of orphaned authorities when Windows id is deleted

$ crtmqm –oa user QMU

----------------
Service:

Name=AuthorizationService
EntryPoints=14
SecurityPolicy=User

24/06/2014

N

O

T

E

S

MQ Security - Authorisation

� One further point of consistency in this release is making the Unix authorisation model the 
same as for Windows – permissions can now be set for individual users, and not just 
groups. So running a command such as "setmqaut –t qmgr –p usr1 +connect" works for 
just that user, and not the primary group.

� This is configured by either creating the queue manager with the "-oa user" option or by 
editing the ini file as shown for existing queue managers – restarting the queue manager 
sets it to work in the new mode. The change is deliberately not dynamic, and requires the 
restart, because it is so fundamental to how the queue manager permissions operate, and 
is not something we would expect to be done frequently.

� All existing permissions are left unchanged when you switch to user-mode authorisations, 
so the group permissions that have been set remain, but new permissions can be set for 
the users.  

� The user-based model is not the default for new queue managers; to keep compatibility 
with older systems, the default is still the group-based model.

� One final security feature is specifically for Windows, to deal with situations where users 
have been deleted from the system but their MQ permissions have not been deleted from 
the OAM. You can now use the setmqaut command to delete permissions based on SID 
instead of name,  and this will remove the orphaned entries. 



24/06/2014

Advanced Message Security (AMS) on z/OS

• Pre-V8.0 (two started tasks)
– Main Task: ssidAMSM

• Runs API interceptor

• Enforces policies

– Data Services task: ssidAMSD
• Performs signature and 

encryption
• Calls System SSL PKCS#7 

Services (uses SAF 
keyrings)

• WebSphere MQ V8
– Single task: ssidAMSM

• Started/stopped with QMgr
• “Private” API Exit code is 

now embedded in the 
product

QMGR (ssidMSTR)

Application

MQ API
“Private”
API Exit

8.0 Interception is built-in

AMS main 
(ssidAMSM)

AMS Data 
Services 

(ssidAMSD)

24/06/2014

N

O

T

E

S

Advanced Message Security (AMS) on z/OS -
Notes

� On z/OS before MQ V8, the MQ Server interceptor for local (bindings mode) is 
implemented as a “private” API exit on z/OS.

� In V8, similar to the change made on Distributed in V7.5, AMS is pulled into the base 
WebSphere MQ product. It’s documentation is also pulled into the WebSphere MQ 
Information Center.

� This provides a better integration with the queue manager including tie-in of the start/stop 
of the AMS address space with start-up and shut-down of the queue manager. Calling the 
AMS address space to do the encryption/decryption work is more efficient and due to no 
longer using the vendor API call intercept method (the “private” API exit), it is less likely to 
conflict with other OEM products.

� The previous two separate AMS address spaces, ssidAMSM (main) and ssidAMSD (data 
services) are now combined into a single address space, ssidAMSM. Any authorities that 
were previously required by ssidAMSD are now needed on ssidAMSM instead. ssidAMSM
now consumes the encryption CPU. The utility that is used on z/OS to setup policies is 
renamed from DRQUTIL to CSQ0UTIL.

� There are no changes to the keyring names, and the hardened version of the policies 
which are stored as messages on the SYSTEM.PROTECTION.POLICY.QUEUE have the 
same shape, so existing policies just work.

� AMS is still priced separately as OTC and has a separately installed FMID which is an 
enablement module for AMS.



24/06/2014

Channel Authentication Records – Recap

• Set rules to control how inbound connections are trea ted
– Inbound Clients
– Inbound QMgr to QMgr channels
– Other rogue connections causing FDCs

• Rules can be set to
– Allow a connection
– Allow a connection and assign an MCAUSER
– Block a connection
– Ban privileged access
– Provide multiple positive or negative SSL Peer Name matching

• Rules can use any of the following identifying
characteristics of the inbound connection
– IP Address
– SSL/TLS Subject’s Distinguished Name
– Client asserted user ID
– Remote queue manager name

24/06/2014

N

O

T

E

S

Channel Authentication Records – Notes

� Channel Authentication records allow you to define rules about how inbound connections 
into the queue manager should be treated. Inbound connections might be client channels 
or queue manager to queue manager channels. These rules can specify whether 
connections are allowed or blocked. If the connection in question is allowed, the rules can 
provide a user ID that the channel should run with or indicate that the user ID provided by 
the channel (flowed from the client or defined on the channel definition) is to be used.

� These rules can therefore be used to
– Set up appropriate identities for channels to use when they run against the queue manager

– Block unwanted connections

– Ban privileged users

� Which users are considered privileged users is slightly different depending on which 
platform you are running your queue manager on. There is a special value ‘*MQADMIN’
which has been defined to mean “any user that would be privileged on this platform”. This 
special value can be used in the rules that check against the final user ID to be used by 
the channel – TYPE(USERLIST) rules – to ban any connection that is about to run as a 
privileged user. This catches any blank user IDs flowed from clients for example.



24/06/2014

Channel Authentication Rules using IP 
Addresses

• Initial Listener blocking list
– Should be used sparingly
– List of

IP addresses/range/pattern
– Not replacing IP firewall

• Channel based blocking of
IP addresses

– Single IP address/range/pattern

• Channel allowed in, based on
IP addresses

– Single IP address/range/pattern

• Further qualified rule including
IP address on another rule type

– Works with SSLPEER,
QMNAME and CLNTUSER

SET CHLAUTH(‘*’) TYPE(BLOCKADDR)
ADDRLIST(‘9.20.*’, ‘192.168.2.10’)

SET CHLAUTH(‘APPL1.*’) 
TYPE(ADDRESSMAP)
ADDRESS(‘9.20.*’) USERSRC(NOACCESS)

SET CHLAUTH(‘*’) TYPE(SSLPEERMAP)
SSLPEER(‘CN=“Morag Hughson”’) 
ADDRESS(‘9.20.*’) MCAUSER(HUGHSON)

SET CHLAUTH(‘*.SVRCONN’) 
TYPE(ADDRESSMAP)
ADDRESS(‘9.20-21.*’) MCAUSER(HUSER)

24/06/2014

N

O

T

E

S

Channel Authentication Rules using IP 
Addresses – Notes

� There are four  different ways that IP addresses could be used in channel 
authentication records.

� The initial check that the listener makes for banned IP addresses, which 
are based on the rule created using a TYPE(BLOCKADDR) record. This 
rule is something that should be used sparingly. It is intended as an MQ 
administrator control to temporarily configure banned IP addresses until the 
IP firewall can be updated to cope with the issue.

� Once the initial channel flows have been made the mapping rules kick in. 
You can ban a particular IP address from a channel by using 
USERSRC(NOACCESS) on a mapping rule.

� You can also map a channel to use a particular MCAUser or to flow 
through it’s client side credentials if it comes from a particular IP address.

� Finally, IP address restrictors can be added to any of the other types of 
mapping rules



24/06/2014

Channel Authentication Rules using 
Hostnames

• Initial Listener blocking list
– Hostnames not allowed

• Channel based blocking of
Hostnames

– Single IP address/range/pattern
or hostname/pattern

• Channel allowed in, based on
Hostnames

– Single IP address/range/pattern
or hostname/pattern 

• Further qualified rule including
hostname on another rule type

– Works with SSLPEER,
QMNAME and CLNTUSER

SET CHLAUTH(‘*’) TYPE(BLOCKADDR)
ADDRLIST(  )

SET CHLAUTH(‘APPL1.*’) 
TYPE(ADDRESSMAP)
ADDRESS(‘*.ibm.com’) 
USERSRC(NOACCESS)

SET CHLAUTH(‘*’) TYPE(SSLPEERMAP)
SSLPEER(‘CN=“Morag Hughson”’) 
ADDRESS(‘s*.ibm.*’) MCAUSER(HUGHSON)

SET CHLAUTH(‘*.SVRCONN’) 
TYPE(ADDRESSMAP)
ADDRESS(‘mach123.ibm.com’) 
MCAUSER(HUSER)

24/06/2014

N

O

T

E

S

Channel Authentication Rules using 
Hostnames – Notes

� Hostnames can be used in almost all places in channel authentication records that 
IP address could be used. The one exception to this is the TYPE(BLOCKADDR) 
record. This is only going to accept IP addresses.

� If you want to block IP addresses with CHLAUTH rules permanently in MQ, rather 
than via your IP firewall, you should be doing it using the TYPE(ADDRESSMAP) 
record and specifying USERSRC(NOACCESS). This type of rules will allow 
hostnames as well.

� Additionally, positive mapping records allow hostnames, and address restrictors can 
also use hostnames.

� Channel Authentication rules utilise pattern matching to allow the most flexible 
control. IP Addresses have a special form of pattern matching that includes ranges 
and wildcards within each ‘.’ (or ‘:’ for IPv6) section of an IP address. Other pattern 
matching which is done on channel names, and queue manager names is simpler 
with just wild-carded string matching (in other words dots are not considered 
special).

� Hostnames also have pattern matching applied to them – as for channel names and 
queue manager names. That is it is just a wild-carded string matching and 
separators such as dots are not considered special.



24/06/2014

QMgr

Obtaining a hostname

• Hostname is not ‘sent’ from the other end of the channel
• IP address is obtained from TCP/IP socket
• We must ask the Domain Name Server what the hostname is, a.k.a . Reverse Lookup
• If you want to use hostname rules

– Your queue manager must be able to contact your DNS
– Your DNS must be able to resolve the IP addresses

• Sender/Client address
• More than previously needed just to use

CONNAME(‘hostname(port)’)

• NO DNS – NO HOSTNAME
• NO HOSTNAME – NO MATCH • IP address from 

TCP/IP
• Other attributes from 

internal channel 
flows

– Channel Name
– Certificate DN
– Remote QMgr Name
– Client User ID

MQCONNX
User3 + pwd3

Application (User4)

Network
Communications

DNS
IP Address

Hostname

24/06/2014

N

O

T

E

S

Obtaining a hostname – Notes

� In order to be able to process channel authentication records that contain rules using 
hostnames we need to be able to obtain the hostname that represents the IP 
address of the socket. The hostname is not ‘sent’ to us by the channel or by TCP/IP. 
We get the IP address from the socket. We get the other attributes that channel 
authentication records use from the various internal flows across the socket.

� To get the hostname we must ask the Domain Name Server (DNS) what hostname 
goes with the IP address we are currently looking at. In order for this to be 
successful our queue manager must be able to use the DNS. This may already be 
true if you are using hostnames in CONNAME fields for example – which is certainly 
common-place. Also, the DNS must be able to reverse look-up the IP address and 
find a hostname for us. This may not be true in your current set up. Are all the 
sender channel or client application IP addresses currently available in your DNS? In 
order for hostname rules to be used, this must be the case.

� If you cannot reverse look up the hostname then CHLAUTH hostname rules will not 
be able to be matched.



24/06/2014

Avoiding obtaining a hostname

• To stop the Queue Manager
asking the Domain Name Server
for hostnames that go with
IP address,
a.k.a. Reverse Lookup

• No CHLAUTH rules containing a
hostname will be able to match

ALTER QMGR 
REVDNS(DISABLED)

QMgr

MQCONNX
User3 + pwd3

Application (User4)

Network
Communications

DNS

24/06/2014

N

O

T

E

S

Avoiding obtaining a hostname – Notes

� It is possible that you wish this to always be the case. Some people are 
more nervous about the potential security hazards of using hostnames than 
others. When CHLAUTH only used IP addresses to match on, this was not 
something you had to worry about. Now someone might start to get lazy 
and use hostname rules.

� We have added a control to turn off the reverse look up of hostnames. 
There were previously undocumented parameters on both z/OS® and 
distributed to allow this, but as part of this feature we have made an official 
version of these.

� When REVDNS is ENABLED, the reverse look-up of the IP Address to 
retrieve the hostname will still only be done when it is required. If you do 
not use hostnames in CHLAUTH rules, then the only time a reverse look-
up will be done is when writing an error message which contains that 
information. This is the same as the product behaviour pre-V8.



24/06/2014

Using MATCH(RUNCHECK) with 
hostnames

• Just as before, MATCH(RUNCHECK)
mandates an IP address is provided

• Then the queue manager will employ
DNS to find the hostname

• MATCH(RUNCHECK) thus also tests
whether your DNS is correctly set up.

DISPLAY CHLAUTH(SYSTEM.ADMIN.SVRCONN) MATCH(RUNCHECK )
SSLPEER(‘CN=“Morag Hughson”, O=“IBM”’)
CLNTUSER(‘mhughson’) ADDRESS(‘9.180.165.163’)

returns ===>
CHLAUTH(SYSTEM.ADMIN.SVRCONN)
TYPE(ADDRESSMAP)
ADDRESS(‘*.ibm.com’) MCAUSER(HUGHSON)

Chl: SYSTEM.ADMIN.SVRCONN
DN: CN=Morag Hughson.O=IBM
UID: mhughson
IP: 9.180.165.163

24/06/2014

N

O

T

E

S

Using MATCH(RUNCHECK) with 
hostnames – Notes

� The DISPLAY CHLAUTH variant invoked using MATCH(RUNCHECK) allows you to 
provide all the same pieces of information that an inbound client presents to the 
queue manager. As we noted earlier, the hostname is not one of those pieces of 
information, the queue manager has to go and find that information out from the 
Domain Name Server (DNS).

� So when providing information into the MATCH(RUNCHECK) command, you do the 
same as before, you provide the IP address. The queue manager will then make the 
call to DNS as it would if the real inbound connection appeared and find out what the 
hostname is, then run the matching against the rules. If it was able to find out a 
hostname then it will match against a hostname rules, but if it was not, then it won’t.

� If you have your queue manager configured to use REVDNS(DISABLED) and you 
also have some CHLAUTH rules that use hostnames, then a message will appear 
along with the output of the MATCH(RUNCHECK) display in rather the same way 
that it warns you that CHLAUTH is DISABLED.

� Thus DISPLAY CHLAUTH MATCH(RUNCHECK) can help you to determine whether 
your reverse look-up for particular IP addresses is likely to work.



24/06/2014

ALTER QMGR
SSLKEYR(CSQ1RING) 
CERTLABL(‘CSQ1Certificate’) 
CERTQSGL(‘SharedCert’)

ALTER QMGR 
SSLKEYR('var/mqm/qmgrs/QM1/ssl/k
ey') CERTLABL(‘QM1Certificate’)

Single Queue Manager Certificate

• Name Queue Manager Certificate
– Using CERTLABL attribute

• Name Client Certificate
– mqclient.ini file SSL Stanza

• CertificateLabel
– MQCONNX (MQSCO structure)

• CertificateLabel
• Environment variable

– export MQCERTLABL=MyCert

SSLKEYR

mqclient.ini
SSL:

SSLKeyRepository=C:\key
CertificateLabel=MyCert

MQCNO cno = {MQCNO_DEFAULT};
MQSCO sco = {MQSCO_DEFAULT};

cno.Version =  MQCNO_VERSION_4;
sco.Version =  MQSCO_VERSION_5;
memcpy(sco.KeyRepository, ... );
memcpy(sco.CertificateLabel,..);
cno.SSLConfigPtr = &sco;
MQCONNX(QMName,

&cno ,
&hConn,
&CompCode,
&Reason);

QM's Digital 
Certificate

CA Sig

24/06/2014

N

O

T

E

S

Single Queue Manager Certificate

� Before WebSphere MQ V8, the label name for a digital certificate to be 
used by the queue manager (or an MQ Client) was fixed by MQ. You had 
to label your certificate exactly as WebSphere MQ required it, in order for 
the certificate to be found. This doesn’t always meet customer standards of 
certificate labelling.

� In WebSphere MQ V8 you can provide your own label name for the queue 
manager (or an MQ Client) to use.

� For the queue manager you have a new attribute on ALTER QMGR called 
CERTLABL (and additionally CERTQSGL on z/OS for a QSG level 
certificate – previously located with the label ibmWebSphereMQ<QSG-
name>).

� For clients, you can provide the Certificate label in the MQSCO structure 
(along with the SSLKeyRepository location); or in the SSL stanza in the 
mqclient.ini file (along with the SSLKeyRepository location), or using the 
environment variable MQCERTLABL.



24/06/2014

Helpful for migration of certificates

• Migrating over to a new certificate when main certi ficate is 
ready to expire
– Used to have to issue GSKit/RACF commands to rename certificate

• ibmwebspheremqqm1 -> ibmwebspheremqqm1old
• ibmwebspheremqqm1new -> ibmwebspheremqqm1
• REFRESH SECURITY TYPE(SSL)

– Now just MQ commands when the time comes
• Current label is ‘QM1 Cert 2013’
• ALTER QMGR CERTLABL(‘QM1 Cert 2014’)
• REFRESH SECURITY TYPE(SSL)

24/06/2014

N

O

T

E

S

Helpful for migration of certificates

� It is worth highlighting here that the change over from using one certificate 
to another is now a task that can be accomplished by the MQ administrator 
alone, when he is ready. The job of installing the new certificate can be 
done at any prior point and labelled however you wish. That label does not 
now have to change in order to get the queue manager to use it, so it is just 
a task for the MQ administrator to tell the queue manager which label to 
use now, and then refresh.



24/06/2014

QMgr4B

Business Partners with different CA requirements

BP A BP B

QMgr4A QMgr

SSL/
TL

S N
et

wor
k 

Com
m

un
ica

tio
ns

SSL/TLS Network Com
m

unications

QM's Digital 
Certificate from 

Entrust
CA Sig

QM's Digital 
Certificate from 

VeriSign
CA Sig ?

Only one certificate 
to identify the 
queue manager

24/06/2014

N

O

T

E

S

Business Partners with different CA 
requirements – Notes

� Imagine the situation where your company has need to communicate securely with 
two difference business partners. These business partners each have a different 
requirement about the Certificate Authority (CA) who signs the certificates that they 
are happy to accept. In our example, Business Partner A will only accept certificates 
signed by VeriSign, whereas Business Partner B will only accept certificates signed 
by Entrust.

� In order for your company to be able to communicate with both of these Business 
Partners, you need a certificate that is signed by VeriSign (to communicate with 
Business Partner A) and a certificate that is signed by Entrust (to communicate with 
Business Partner B). However, since a queue manager can only have one 
certificate, with releases prior to V8 of WebSphere MQ, you were forced into having 
two queue managers, one using each certificate. This is less than ideal.

� N.B. Some people also solve this issue by using an MQIPT in front of the queue 
manager.



24/06/2014

Certificate per Channel

BP A BP B

QMgr

SSL/
TL

S N
et

wor
k 

Com
m

un
ica

tio
ns

SSL/TLS Network Com
m

unications

QM's Digital 
Certificate from 

Entrust
CA Sig

QM's Digital 
Certificate from 

VeriSign
CA Sig

QM's Digital 
Certificate

CA Sig

ALTER CHANNEL(BPB.TO.ME) 
CHLTYPE(RCVR) 
CERTLABL(‘EntrustCert’)

ALTER CHANNEL(TO.BPB) 
CHLTYPE(SDR) 
CERTLABL(‘EntrustCert’)

ALTER CHANNEL(BPA.TO.ME) 
CHLTYPE(RCVR) 
CERTLABL(‘VeriSignCert’)

ALTER CHANNEL(TO.BPA) 
CHLTYPE(SDR) 
CERTLABL(‘VeriSignCert’)

24/06/2014

N

O

T

E

S

Certificate per Channel – Notes

� What is required is the ability to indicate that this particular channel should 
use a different certificate than other channels.

� This is achieved in WebSphere MQ V8 with an attribute on a channel, 
CERTLABL, which can either be blank – which means use whatever the 
queue manager overall is configured to use, or if provided, means that this 
channel should use the specifically named certificate.

� For reasons explained a little later on, we only allow you to specify a non 
blank CERTLABL at definition time if you are using a TLS cipherspec.



24/06/2014

Why haven’t we always done this?

QM1 (Local)QM1 (Local) QM2 (Remote)QM2 (Remote)
MCA MCA

Channel

Transmission
Queue

Application
QueuesMessage

Message

SSL/TLS Handshake Flows

SSL/TLS Handshake Flows

Initial data flow (inc. Chl Name)

Negotiation complete

QM2's Digital 
Certificate

CA Sig

QM1's Digital 
Certificate

CA Sig

24/06/2014

N

O

T

E

S

Why haven’t we always done this? –
Notes

� The SSL/TLS handshake is done as the first thing on a channel, before any of the 
internal channel FAP flows. If you have ever pointed a web-browser with a https:// 
address at your MQ listener port, you’ll know this. This means that the certificate is 
authenticated long before the channel name at the receiver end is known. This made 
it impossible to choose a certificate to be used for a receiver based on the channel 
name. The best that could have been done would have been to provide a different 
certificate per port number and have several different listeners running, each 
presenting a different certificate.

� Over time however, as SSL/TLS is used by more and more consolidated servers, 
think HTTP server farms and large application servers, it has become necessary to 
be able to separate the traffic that is going to a single server into differently 
authenticated groups.

� Enhancements to the TLS protocol allow the provision of information as part of the 
TLS handshake which can then be used to determine which certificate should be 
used for this particular connection.

� This enhancement is known as Server Name Indication (SNI).



24/06/2014

Server Name Indication

Website A’s
Digital Certificate

CA Sig

Website B's
Digital Certificate

CA Sig

Website C's
Digital Certificate

CA Sig

website-a.com

website-b.com

website-c.com

24/06/2014

N

O

T

E

S

Server Name Indication – Notes

� Wikipedia provides a succinct summary of what Server Name Indication 
(SNI) is.

� The example on this page shows a use case where SNI would be used. 
We have three websites which each have their own certificate. When they 
were hosted on individual servers, then this was no problem, each web 
server has one certificate.

� Now let’s think about what happens if we decide to consolidate those web
sites onto a single server. How can we maintain the certificate correlation 
with the website. SNI allows this to be able to happen by providing a place 
in the TLS handshake for additional data to be flowed. This additional data 
is the hostname the browser was trying to connect to, thus allowing the 
certificate to be chosen based off that hostname.



24/06/2014

Using Server Name Indication (SNI) with a 
channel name

• Both ends of the channel must be at the new release
• Only TLS can be used, no SSL

– Only certain cipherspecs will be able to supply this behaviour
• JSSE doesn’t yet support SNI

– So Java client can’t make use of it
• If old sender/client used, we’d only detect that we needed to s upply a different 

certificate after completion of the handshake and will fail th e connection, if it 
hasn’t already failed due to using the wrong certificate!

QM1 (Local)QM1 (Local) QM2 (Remote)QM2 (Remote)
MCA MCA

Channel

Transmission
Queue

Application
QueuesMessage

Message

TLS Handshake Flows (inc. Chl Name)

TLS Handshake Flows

Initial data flow (inc. Chl Name)

Negotiation complete

Chl: TO.QM2's 
Digital Certificate

CA Sig

QM1’s Digital 
Certificate

CA Sig

24/06/2014

N

O

T

E

S

Using Server Name Indication (SNI) with 
a channel name

� WebSphere MQ V8 uses SNI to provide a channel name instead of a hostname. The 
sender (or client) end of the channel has been enhanced to put the channel name 
into the Server Name Indication (SNI) hint for the TLS Handshake.

� The receiver (or server-conn) end of the channel has been enhanced to retrieve the 
channel name from the SNI hint and select the appropriate certificate based on that 
information. It is worth nothing that the channel name is now flowing in the clear, 
although in a tamper-proof manner.

� There are some restrictions to using this feature as listed.

� A back-level queue manager upon receiving a TLS handshake containing SNI, will 
just ignore what is in the SNI (as it is defined as an optional extension) and use the 
normal certificate.

� If there are no channels defined on the queue manager with anything in the 
CERTLABL field, then SNI will not be used by the receiving end. This will leave the 
behaviour the same as prior releases for certificate selection.



24/06/2014

Ensuring the Correct Certificate

QMgr
SET CHLAUTH(BPA.TO.ME) 

TYPE(SSLPEERMAP) 
SSLPEER(‘CN=BP A’) 
MCAUSER(BPAUSR)

CA Certificate

CA Certificate 
Internal

Connection

SSLCERTI(‘CN=VeriSign’)

S
S

L/
T

LS
 N

et
w

or
k 

C
om

m
un

ic
at

io
ns

BP A's Digital 
Certificate

CA Sig
from Internal CA

Internal CA

Secy
Exit

Security Exit
is passed…
MQCD.SSLPeerNamePtr
MQCXP.SSLRemCertIssNamePtr

24/06/2014

N

O

T

E

S

Ensuring the Correct Certificate – Notes

� However, since we now accept certificates which come from two different Certificate 
Authorities (CAs) we can run foul of another issue.

� One of the benefits of CAs is that they guarantee not to issue the certificates with the 
same DN as another certificate that they have already issued. So a rogue 
connection could not obtain a certificate with the same DN as Business Partner A 
from VeriSign, because VeriSign has already issued one with that DN. Also, one 
would expect external CA’s to do a few more checks than that and not issue 
certificates with other people’s company names in them to people not from that 
company. However, an internal CA may not be so diligent. Some internal CAs may 
simply accept what the user requests as their DN, so our rogue could obtain a 
certificate with Business Partner A’s DN from such a CA.

� The only way to solve this issue in the past was to use a security exit, since security 
exits are presented with both the issuer’s and subject’s Distinguished Name. 
However, we are trying to get away from people having to write exits for common 
security issues, and this very much falls into that category.

� In WebSphere MQ V8, we can solve this issue by using a new attribute on 
CHLAUTH rules which matches the issuer’s DN – SSLCERTI. Our CHLAUTH rules 
can now be fully qualfied to use both SSLPEER (the subject’s DN) and SSLCERTI 
(the issuer’s DN).



24/06/2014

Changes for Channels using SSL/TLS Certificates

• Single Queue Manager Certificate
– ALTER QMGR CERTLABL('My certificate name')

• Per Channel Certificate
– ALTER CHANNEL … CERTLABL('This chl certificate')

• Certificate Matching
– SET CHLAUTH('*')

TYPE(SSLPEERMAP)
SSLPEER('CN=Morag Hughson')
SSLCERTI('CN=IBM CA')
MCAUSER('hughson')

24/06/2014

N

O

T

E

S

Ensuring the Correct Certificate

� However, since we now accept certificates which come from two different Certificate 
Authorities (CAs) we can run foul of another issue.

� One of the benefits of CAs is that they guarantee not to issue the certificates with the 
same DN as another certificate that they have already issued. So a rogue connection 
could not obtain a certificate with the same DN as Business Partner A from VeriSign, 
because VeriSign has already issued one with that DN. Also, one would expect external 
CA’s to do a few more checks than that and not issue certificates with other people’s 
company names in them to people not from that company. However, an internal CA may 
not be so diligent. Some internal CAs may simply accept what the user requests as their 
DN, so our rogue could obtain a certificate with Business Partner A’s DN from such a CA.

� The only way to solve this issue in the past was to use a security exit, since security exits 
are presented with both the issuer’s and subject’s Distinguished Name. However, we are 
trying to get away from people having to write exits for common security issues, and this 
very much falls into that category.

� In WebSphere MQ V8, we can solve this issue by using a new attribute on CHLAUTH 
rules which matches the issuer’s DN – SSLCERTI. Our CHLAUTH rules can now be fully 
qualfied to use both SSLPEER (the subject’s DN) and SSLCERTI (the issuer’s DN).



24/06/2014

IBM MQ V8 delivering best in class 
enterprise messaging

Platforms & 
Standards

Security Scalability System z exploitation

64-bit for all platforms
Userid authentication 
via OS & LDAP

Multiplexed client 
performance

64-bit buffer pools in MQ for 
z/OS means less paging, more 
performance

Support for JMS 2.0
User-based 
authorisation for Unix

Queue manager 
vertical scaling

Performance and capacity

Improved support for 
.NET and WCF

AMS for IBM i & z/OS
Publish/Subscribe 
improvements

Performance enhancements for 
IBM Information Replicator 
(QRep)

Changes to runmqsc
DNS Hostnames in 
CHLAUTH records

Routed 
publish/subscribe

Exploit zEDC compression 
accelerator

SHA-2 for z, i & NSS
Multiple certificates 
per queue manager

Multiple cluster 
transmission queues 
on all platforms

SMF and shared queue 
enhancements



24/06/2014

Multiplexed client performance

• Version 7 introduced support for SHARECNV
– Multiple client conversations (e.g. threads) can use the same TCP/IP socket 

(channel instance)
• SHARECNV(0)

– No conversation sharing, behaviour as per version 6
• SHARECNV(1)

– No conversation sharing
– Heartbeats, asynchronous message consumption and read-ahead support

• SHARECNV(n>1)
– Up to n conversations per channel instance - reduces number of sockets 

and channel instances

• Performance improvements
– On distributed, SHARECNV(n>1) can impact performance if multiple 

conversations are busy due to contention for the socket
– In version 8, SHARECNV(1)optimized for parity with SHARECNV(0)

24/06/2014

N

O

T

E

S

Multiplexed client performance

� Prior to version 7 each client conversation uses a separate socket and 
channel instance.  If clients establish multiple conversations using different 
threads this can create a large demand for sockets on the server.  Each 
channel instance also requires storage on the queue manager.

� In version 7 support was added to allow client conversations to share the 
same socket/channel instance.  This can significantly reduce the resource 
overhead associated with these connections.  Support for bi-directional 
communication was also introduced that supports new capabilities, such as 
heartbeats, read-ahead and asynchronous message consumption.

� However, if multiple conversations share the same socket, contention can 
arise if the total workload for the conversations exceeds the capacity of the 
socket.  Additionally, an overhead is also introduced to serialize access 
when sending and receiving TCP/IP data.

� SHARECNV(0)disables all version 7 enhancements.  SHARECNV(1)can 
be used to disable only conversation sharing. Unfortunately, in version 7 
the latter incurs a notable performance overhead as a result of enabling the 
other version 7 capabilities.  In version 8, support for SHARECNV(1)has 
been optimized to achieve parity with SHARECNV(0).



24/06/2014

Distributed vertical scaling

• Vertical scaling of distributed queue managers has been 
enhanced
– Various efficiency improvements, including

• Better cache alignment
• Extended 64-bit exploitation for locking primitives
• Better compiler optimisations
• Faster data conversion, especially for UTF-8
• Object catalogue restructured

– Better exploitation of SMP machines
– Less targeted at internal benchmarks – hopefully more realistic 

scenarios

24/06/2014

N

O

T

E

S

Distributed vertical scaling

� A number of enhancements have been implemented in version 8 to 
improve the vertical scaling of queue managers on the distributed 
platforms. Some of these improvements are listed on the previous slide.

� We’ve also updated the focus of our performance testing to be less reliant 
on some internal benchmarks that do not represent realistic customer 
workloads.  Although each customer workload is different, so guarantees 
are not possible, the performance improvements in version 8 are more 
likely to be relevant to real-world scenarios.



24/06/2014

Publish/subscribe improvements

• Improved PROXYSUB(FORCE)behaviour
– Version 7 uses individual proxy subscriptions
– Version 8 uses wildcards where appropriate to reduce flows

• Improved error handling in multi-queue manager 
environments

• Improved scaling for large topic trees
– Linear scaling to at least a million topics

• Improved DISPLAY PUBSUB

– Allows detection of unexpected growth in topics/subscriptions

AMQ8723: Display pub/sub status details.
QMNAME(QMGR3)      TYPE(LOCAL)
STATUS(ACTIVE)     SUBCOUNT(241)
TPCOUNT(105)

24/06/2014

N

O

T

E

S

Publish/subscribe improvements

� In a publish/subscribe hierarchy, or cluster, proxy subscriptions are used to 
indicate which queue managers in the topology publications need to be 
propagated to for remote subscribers.  If applications have short-lived 
subscriptions the delay incurred propagating the proxy subscriptions to all 
queue managers can result in some remote publications not being 
delivered. PROXYSUB(FORCE)can be specified on a topic to force all 
publications to be propagated to all remote queue managers.  This avoids 
this problem at the expense of propagating messages even when there are 
no subscribers connected to a queue manager.  In version 8 using
PROXYSUB(FORCE)also significantly reduces the overhead of propagating 
proxy subscriptions for a given topic node.

� Internal topic tree management has been enhanced for large numbers of 
topics.  Performance should scale linearly up to at least a million topics.

� The DISPLAY PUBSUBcommand has also been enhanced to report the 
total number of topics and subscribers.  This can be used to detect growth 
in these and help determine the potential impact of a wildcard in a 
DISPLAY TOPIC/SUB/TPSTATUS/SBSTATUS command.



24/06/2014

Routed publish/subscribe

• In version 7, all queue managers in a cluster know 
everything and need to be able to connect to anyone

CLUS1

FR

TOPIC(T1) CLUSTER(CLUS1)

Sub to T1

Queue manager

CLUSQMGR knowledge

Channel
Proxy subscription

Pub to T1

24/06/2014

N

O

T

E

S

Routed publish/subscribe

� In previous releases, if publish/subscribe is used within a cluster, all queue 
managers require knowledge of all subscriptions throughout the cluster for 
publications to locally connected applications.

� Similarly, every queue manager requires connectivity to every other queue 
manager to establish proxy-subscriptions and/or deliver publications 
throughout the cluster.



24/06/2014

Routed publish/subscribe

• In version 8 you can configure a subset of queue ma nagers 
to know everything and connect to everyone

• Publications are sent via                                       
these queue managers

FR

Pub to T1

Sub to T1

CLUS1

Queue manager

CLUSQMGR knowledge

Channel

Proxy subscription

TOPIC(T1) CLUSTER(CLUS1)

24/06/2014

N

O

T

E

S

Routed publish/subscribe

� In version 8 you can optionally designate, on a per-topic basis, a subset of 
queue managers within the cluster as gateways for publish/subscribe.

� This subset of queue managers need to know everything and be able to 
connect to every other queue manager.  However, other queue managers 
in the cluster only need to know about, and be able to connect to, the 
subset.

� All publications are routed through one of the gateway queue managers, 
who then fan them out as required.

� This improves scalability and isolation by reducing traffic within the cluster.



24/06/2014

Multiple cluster transmission queues

• Multiple cluster transmission queues added in V7.5
– Support for z/OS and IBM i added in V8

• Benefits of using multiple transmission queues
– Separation of message traffic

• With a single transmission queue, pending messages for one 
channel can interfere with those for another, especially when 
messages build up on the queue

– Management of messages
• Use of queue concepts such as MAXDEPTHare not useful when 

using a single transmission queue for all cluster-sender channels
– System monitoring

• Tracking the number of messages processed by a cluster-sender 
channel is not possible using queue monitoring if a single 
transmission queue is shared by multiple channels, although 
some information is available using channel status

24/06/2014

N

O

T

E

S

Multiple cluster transmission queues

� Support for multiple cluster transmission queues was added on the 
distributed platforms in version 7.5.  Version 8 adds support for this 
capability on z/OS and IBM i.

� A different transmission queue can now be used by each cluster-sender 
channel, or a subset of cluster-sender channels, instead of all channels 
using SYSTEM.CLUSTER.TRANSMIT.QUEUE.

� The introduction of multiple cluster transmission queues is not designed to 
improve performance, but to provide a capability to isolate message traffic.

– It is quicker to assess the impact of an issue if traffic is separated for different applications.

– If a queue manager is a member of multiple clusters, a different transmission queue can be 
used for each cluster.  This can prevent a build up of messages for one cluster, that results in 
a full page set or MAXDEPTHbeing reached, impacting the other clusters.

– If messages for different applications are sent over different cluster channels* a problem for 
one application can be prevented from impacting others.

* This can be achieved by using a separate cluster for each application, which may overlap with 
other clusters, or hosting the target queues for each application on different cluster queue 
managers.



24/06/2014

Configuring cluster transmission queues

• DEFCLXQqueue manager attribute
– Default transmission queue for cluster-sender channels
– SCTQ

• Use SYSTEM.CLUSTER.TRANSMIT.QUEUE
– CHANNEL

• Create a permanent-dynamic transmission queue per cluster-
sender channel called 
SYSTEM.CLUSTER.TRANSMIT.<channel name>

• CLCHNAMEqueue attribute
– Set on a manually defined transmission queue
– Generic name for channels that should use it

• DEFINE QLOCAL(CLUSTER.XMITQ1) USAGE(XMITQ) 
CLCHNAME(‘AAA.*’) …

– Most specific match is used by a channel

24/06/2014

N

O

T

E

S

Configuring cluster transmission queues

� The transmission queue to use for each channel can be configured in two 
ways:

� A manually defined transmission queue can be configured using the 
CLCHNAMEattribute.  The value of this attribute is a generic, or specific, 
name for the channels that should use it. The mapping is defined on the 
transmission queue instead of the channel because the channel’s definition 
is determined from the cluster-receiver definition on the remote queue 
manager.  If a channel’s name matches multiple CLCHNAMEvalues the 
most specific match is used to determine which transmission queue to use.

� If no matching queue is found the queue manager uses the default
transmission queue setting, specified by the DEFCLXQqueue manager 
attribute, to determine which transmission queue to use.  This attribute 
indicates whether to use SYSTEM.CLUSTER.TRANSMIT.QUEUEor to 
create a permanent-dynamic transmission queue called 
SYSTEM.CLUSTER.TRANSMIT.<channel name> .



24/06/2014

Configuring cluster transmission queues

Consider the following definitions …

What transmission queues are used by the following channels?
– Channel AAA.BBB

– Channel AAA.CCC

– Channel XXX.YYY 

DEFINE QLOCAL(CLUSTER.XMITQ1) USAGE(XMITQ) CLCHNAME(‘AAA.*’) …
DEFINE QLOCAL(CLUSTER.XMITQ2) USAGE(XMITQ) CLCHNAME(‘AAA.BBB’) …

CLUSTER.XMITQ2because the transmission queue has a specific CLCHNAMEvalue 
that matches the channel name

CLUSTER.XMITQ1because the transmission queue has a generic CLCHNAMEvalue 
that matches the channel name and there isn’t a more specific match

It will use either SYSTEM.CLUSTER.TRANSMIT.QUEUEor a permanent-dynamic 
transmission queue called SYSTEM.CLUSTER.TRANSMIT.XXX.YYYdepending on 
the value of the DEFCLXQqueue manager attribute

24/06/2014

N

O

T

E

S

Configuring cluster transmission queues

� The previous slide illustrates the preferences used by the queue manager to 
determine which transmission queue should be used by each channel.  Given the 
two manually defined transmission queues shown at the top of the slide, the first 
channel, AAA.BBB, uses the transmission queue CLUSTER.XMITQ2.  This is 
because this queue has a CLCHNAMEvalue that exactly matches the name of the 
channel.  Although the channel name also matches the generic pattern specified for 
the transmission queue CLUSTER.XMITQ1, the more specific match takes 
precedence.

� The second channel, AAA.CCC, only matches the generic CLCHNAMEpattern 
configured for the transmission queue CLUSTER.XMITQ1, so this transmission 
queue is used.

� The third channel, XXX.YYY, does not match either of the CLCHNAMEpatterns.  
Therefore, the queue manager uses the DEFCLXQqueue manager attribute to 
determine whether to use SYSTEM.CLUSTER.TRANSMIT.QUEUEor a permanent-
dynamic transmission queue for the channel called 
SYSTEM.CLUSTER.TRANSMIT.XXX.YYY. If the latter is used, the transmission 
queue is created automatically by the queue manager using the model queue 
SYSTEM.CLUSTER.TRANSMIT.MODEL.QUEUE.



24/06/2014

Switching transmission queue

• A channel switches transmission queue in one of two ways:
– Automatically when the channel next starts

• Changes do not take effect while a channel is running
– Manually using CSQUTILand the SWITCH CHANNELfunction

• This is the equivalent of runswchl on distributed platforms

• Switching sequence
1. Channel starts and resolves in-doubt status

2. Channel initiates switch
3. Channel switches to get messages from new transmission queue

– New messages continue to be put to the old transmission queue

4. Queue manager starts moving messages for the channel from the old 
transmission queue to the new transmission queue

5. Switch completes when no committed or uncommitted messages for the 
channel remain on the old transmission queue
– New messages now put to the new transmission queue

24/06/2014

N

O

T

E

S

Switching transmission queue

� Administrative changes to the transmission queue each cluster-sender channel uses 
do not take effect until the channel next starts.  When a cluster-sender channel 
starts it checks for a pending switch of transmission queue.  If applicable, the switch 
is initiated after resolving any in-doubt channel status.

� The switching process completes in two phases.  The first phase persists the switch 
of transmission queue and the channel changes to get messages from the new 
transmission queue, while messages continue to be put to the old transmission 
queue.  The second phase, which can be long running, involves the queue manager 
moving messages in the background from the old transmission queue to the new 
transmission queue.  Only when no committed or uncommitted messages for the 
channel remain on the old transmission queue does the switch complete.  Once a 
switch has completed new messages are put directly to the new transmission queue.  
Messages for other channels on both the old and new transmission queues are not 
affected by the switching process.

� An administrator can use CSQUTIL to manually switch the transmission queue for a 
cluster-sender channel while it is not active.  This allows for configuration updates to 
be performed during maintenance windows.



24/06/2014

Administering cluster transmission queues

• Version 8 new function must be enabled
• Various console messages output during the switchin g process

– DISPLAY CHSTATUSand DISPLAY CLUSQMGRcan be used to view the 
transmission queue a cluster-sender channel is using

• CSQUTIL can report the following for each cluster-sender ch annel
– Transmission queue currently in use
– Pending / in-progress switch information

• The ‘old’ and ‘new’ transmission queue names

• The number of messages for the channel on the old transmission queue

CSQM439I !QM02 CLUSQMGR(QM01)
CLUSTER(CL01)
CHANNEL(CL01.TO.QM01)
STATUS(INACTIVE)
XMITQ(SYSTEM.CLUSTER.TRANSMIT.CL01.TO.QM01)

SWITCH CHANNEL(*) STATUS

24/06/2014

N

O

T

E

S

Administering cluster transmission 
queues

� Previous releases of WebSphere MQ on z/OS do not support multiple 
cluster transmission queues, so this capability cannot be used until version 
8 new function has been enabled using the OPMODEsystem parameter, at 
which time backwards migration is no longer permitted.

� During the switching process various console messages are output to 
indicate the progress of this operation.  The queue manager is responsible 
for moving messages for the channel to the new transmission queue, so 
most of the console messages are output in the queue manager job log. 

� The display commands for channel status and cluster queue manager 
information have been enhanced to allow an administrator to view the 
transmission queue each cluster-sender channel is using.  Administrative 
changes that have not taken effect are not reported by these commands, 
but CSQUTIL can be used to view the transmission queue associated with 
each channel.  If a switch is pending, or in progress, this utility reports the 
old and new transmission queues, plus the number of messages that 
remain on the old transmission queue that have yet to be moved.



24/06/2014

Summary

Platforms & 
Standards

Security Scalability System z exploitation

64-bit for all platforms
Userid authentication 
via OS & LDAP

Multiplexed client 
performance

64-bit buffer pools in MQ for 
z/OS means less paging, more 
performance

Support for JMS 2.0
User-based 
authorisation for Unix

Queue manager 
vertical scaling

Performance and capacity

Improved support for 
.Net and WCF

AMS for IBM i & z/OS
Publish/Subscribe 
improvements

Performance enhancements for 
IBM Information Replicator 
(QRep)

Changes to runmqsc
DNS Hostnames in 
CHLAUTH records

Routed 
publish/subscribe

Exploit zEDC compression 
accelerator

SHA-2 for z, i & NSS
Multiple certificates 
per queue manager

Multiple Cluster 
Transmit Queue on all 
platforms

SMF and shared queue 
enhancements

Afternoon Session


